Fuzzy measure identification for criteria coalitions using linguistic information View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2015-01-29

AUTHORS

R. Bernal, M. Karanik, J. I. Peláez

ABSTRACT

Modeling interactions between criteria in multiple criteria decision analysis (MCDA) is a complex task. Such complexity arises when there are visible redundancies and synergies among criteria, which traditional MCDA methods cannot deal with. The Choquet integral is a model that has been conceived to deal with these issues, but an appropriate fuzzy measure must be defined. This article shows how to compute a fuzzy measure for criteria coalitions using linguistic information efficiently. Due to the complexity to identify an adequate fuzzy measure when the criteria set cardinality increases, the proposed model reduces the effort to determine the measure of each criteria combination by focusing on relevant interactions. Then, this fuzzy measure is used on Choquet integral to establish the best alternative in a decision-making problem. Finally, a comparison between the arithmetic mean, the OWA operator and the proposed method is presented. More... »

PAGES

1315-1327

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00500-015-1589-5

DOI

http://dx.doi.org/10.1007/s00500-015-1589-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1005032462


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National Technological University, 3500, Resistencia, Argentine", 
          "id": "http://www.grid.ac/institutes/grid.440485.9", 
          "name": [
            "National Technological University, 3500, Resistencia, Argentine"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bernal", 
        "givenName": "R.", 
        "id": "sg:person.016531236135.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016531236135.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Technological University, 3500, Resistencia, Argentine", 
          "id": "http://www.grid.ac/institutes/grid.440485.9", 
          "name": [
            "National Technological University, 3500, Resistencia, Argentine"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Karanik", 
        "givenName": "M.", 
        "id": "sg:person.010555432135.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010555432135.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Languages and Computer Sciences, University of Malaga, 29071, Malaga, Spain", 
          "id": "http://www.grid.ac/institutes/grid.10215.37", 
          "name": [
            "Department of Languages and Computer Sciences, University of Malaga, 29071, Malaga, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pel\u00e1ez", 
        "givenName": "J. I.", 
        "id": "sg:person.013543334135.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013543334135.41"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00500-012-0975-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029336858", 
          "https://doi.org/10.1007/s00500-012-0975-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10700-009-9065-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032275687", 
          "https://doi.org/10.1007/s10700-009-9065-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/1-4020-3167-x_23", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013551986", 
          "https://doi.org/10.1007/1-4020-3167-x_23"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/0-387-23081-5_14", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085141729", 
          "https://doi.org/10.1007/0-387-23081-5_14"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10700-010-9086-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036555064", 
          "https://doi.org/10.1007/s10700-010-9086-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00500-009-0453-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012604608", 
          "https://doi.org/10.1007/s00500-009-0453-x"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-01-29", 
    "datePublishedReg": "2015-01-29", 
    "description": "Modeling interactions between criteria in multiple criteria decision analysis (MCDA) is a complex task. Such complexity arises when there are visible redundancies and synergies among criteria, which traditional MCDA methods cannot deal with. The Choquet integral is a model that has been conceived to deal with these issues, but an appropriate fuzzy measure must be defined. This article shows how to compute a fuzzy measure for criteria coalitions using linguistic information efficiently. Due to the complexity to identify an adequate fuzzy measure when the criteria set cardinality increases, the proposed model reduces the effort to determine the measure of each criteria combination by focusing on relevant interactions. Then, this fuzzy measure is used on Choquet integral to establish the best alternative in a decision-making problem. Finally, a comparison between the arithmetic mean, the OWA operator and the proposed method is presented.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00500-015-1589-5", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1050238", 
        "issn": [
          "1432-7643", 
          "1433-7479"
        ], 
        "name": "Soft Computing", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "20"
      }
    ], 
    "keywords": [
      "fuzzy measures", 
      "Choquet integral", 
      "decision-making problems", 
      "multiple criteria decision analysis", 
      "fuzzy measure identification", 
      "linguistic information", 
      "OWA operator", 
      "complex task", 
      "integrals", 
      "measure identification", 
      "criteria combinations", 
      "appropriate fuzzy measure", 
      "visible redundancies", 
      "such complexity", 
      "MCDA methods", 
      "decision analysis", 
      "complexity", 
      "criteria decision analysis", 
      "operators", 
      "arithmetic mean", 
      "information", 
      "model", 
      "problem", 
      "redundancy", 
      "task", 
      "criteria", 
      "good alternative", 
      "method", 
      "measures", 
      "issues", 
      "coalition", 
      "efforts", 
      "means", 
      "analysis", 
      "alternative", 
      "synergy", 
      "identification", 
      "relevant interactions", 
      "comparison", 
      "article", 
      "interaction", 
      "combination", 
      "increase", 
      "traditional MCDA methods", 
      "criteria coalitions", 
      "adequate fuzzy measure", 
      "cardinality increases"
    ], 
    "name": "Fuzzy measure identification for criteria coalitions using linguistic information", 
    "pagination": "1315-1327", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1005032462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00500-015-1589-5"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00500-015-1589-5", 
      "https://app.dimensions.ai/details/publication/pub.1005032462"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:25", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_670.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00500-015-1589-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00500-015-1589-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00500-015-1589-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00500-015-1589-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00500-015-1589-5'


 

This table displays all metadata directly associated to this object as RDF triples.

146 TRIPLES      22 PREDICATES      77 URIs      63 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00500-015-1589-5 schema:about anzsrc-for:08
2 anzsrc-for:0806
3 schema:author N7f097e15415842289cd036a02f73ea29
4 schema:citation sg:pub.10.1007/0-387-23081-5_14
5 sg:pub.10.1007/1-4020-3167-x_23
6 sg:pub.10.1007/s00500-009-0453-x
7 sg:pub.10.1007/s00500-012-0975-5
8 sg:pub.10.1007/s10700-009-9065-2
9 sg:pub.10.1007/s10700-010-9086-x
10 schema:datePublished 2015-01-29
11 schema:datePublishedReg 2015-01-29
12 schema:description Modeling interactions between criteria in multiple criteria decision analysis (MCDA) is a complex task. Such complexity arises when there are visible redundancies and synergies among criteria, which traditional MCDA methods cannot deal with. The Choquet integral is a model that has been conceived to deal with these issues, but an appropriate fuzzy measure must be defined. This article shows how to compute a fuzzy measure for criteria coalitions using linguistic information efficiently. Due to the complexity to identify an adequate fuzzy measure when the criteria set cardinality increases, the proposed model reduces the effort to determine the measure of each criteria combination by focusing on relevant interactions. Then, this fuzzy measure is used on Choquet integral to establish the best alternative in a decision-making problem. Finally, a comparison between the arithmetic mean, the OWA operator and the proposed method is presented.
13 schema:genre article
14 schema:inLanguage en
15 schema:isAccessibleForFree false
16 schema:isPartOf N27b0225884f248b1acce07f6d8e52a12
17 N9871994f93be4982a4b652c34ecf54e6
18 sg:journal.1050238
19 schema:keywords Choquet integral
20 MCDA methods
21 OWA operator
22 adequate fuzzy measure
23 alternative
24 analysis
25 appropriate fuzzy measure
26 arithmetic mean
27 article
28 cardinality increases
29 coalition
30 combination
31 comparison
32 complex task
33 complexity
34 criteria
35 criteria coalitions
36 criteria combinations
37 criteria decision analysis
38 decision analysis
39 decision-making problems
40 efforts
41 fuzzy measure identification
42 fuzzy measures
43 good alternative
44 identification
45 increase
46 information
47 integrals
48 interaction
49 issues
50 linguistic information
51 means
52 measure identification
53 measures
54 method
55 model
56 multiple criteria decision analysis
57 operators
58 problem
59 redundancy
60 relevant interactions
61 such complexity
62 synergy
63 task
64 traditional MCDA methods
65 visible redundancies
66 schema:name Fuzzy measure identification for criteria coalitions using linguistic information
67 schema:pagination 1315-1327
68 schema:productId N5d9f2d5072af43a8a0960cef777c1d66
69 Nede6d5dce5404a5f8cede3820ffb0671
70 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005032462
71 https://doi.org/10.1007/s00500-015-1589-5
72 schema:sdDatePublished 2021-11-01T18:25
73 schema:sdLicense https://scigraph.springernature.com/explorer/license/
74 schema:sdPublisher N253a602135034e09a1f97ffc76b1b31d
75 schema:url https://doi.org/10.1007/s00500-015-1589-5
76 sgo:license sg:explorer/license/
77 sgo:sdDataset articles
78 rdf:type schema:ScholarlyArticle
79 N253a602135034e09a1f97ffc76b1b31d schema:name Springer Nature - SN SciGraph project
80 rdf:type schema:Organization
81 N27b0225884f248b1acce07f6d8e52a12 schema:volumeNumber 20
82 rdf:type schema:PublicationVolume
83 N5d9f2d5072af43a8a0960cef777c1d66 schema:name doi
84 schema:value 10.1007/s00500-015-1589-5
85 rdf:type schema:PropertyValue
86 N62b4f4108e724b639b7e3366c36e34c4 rdf:first sg:person.010555432135.02
87 rdf:rest N6620de8855104218a65a81bc5b706a12
88 N6620de8855104218a65a81bc5b706a12 rdf:first sg:person.013543334135.41
89 rdf:rest rdf:nil
90 N7f097e15415842289cd036a02f73ea29 rdf:first sg:person.016531236135.02
91 rdf:rest N62b4f4108e724b639b7e3366c36e34c4
92 N9871994f93be4982a4b652c34ecf54e6 schema:issueNumber 4
93 rdf:type schema:PublicationIssue
94 Nede6d5dce5404a5f8cede3820ffb0671 schema:name dimensions_id
95 schema:value pub.1005032462
96 rdf:type schema:PropertyValue
97 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
98 schema:name Information and Computing Sciences
99 rdf:type schema:DefinedTerm
100 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
101 schema:name Information Systems
102 rdf:type schema:DefinedTerm
103 sg:journal.1050238 schema:issn 1432-7643
104 1433-7479
105 schema:name Soft Computing
106 schema:publisher Springer Nature
107 rdf:type schema:Periodical
108 sg:person.010555432135.02 schema:affiliation grid-institutes:grid.440485.9
109 schema:familyName Karanik
110 schema:givenName M.
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010555432135.02
112 rdf:type schema:Person
113 sg:person.013543334135.41 schema:affiliation grid-institutes:grid.10215.37
114 schema:familyName Peláez
115 schema:givenName J. I.
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013543334135.41
117 rdf:type schema:Person
118 sg:person.016531236135.02 schema:affiliation grid-institutes:grid.440485.9
119 schema:familyName Bernal
120 schema:givenName R.
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016531236135.02
122 rdf:type schema:Person
123 sg:pub.10.1007/0-387-23081-5_14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085141729
124 https://doi.org/10.1007/0-387-23081-5_14
125 rdf:type schema:CreativeWork
126 sg:pub.10.1007/1-4020-3167-x_23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013551986
127 https://doi.org/10.1007/1-4020-3167-x_23
128 rdf:type schema:CreativeWork
129 sg:pub.10.1007/s00500-009-0453-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1012604608
130 https://doi.org/10.1007/s00500-009-0453-x
131 rdf:type schema:CreativeWork
132 sg:pub.10.1007/s00500-012-0975-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029336858
133 https://doi.org/10.1007/s00500-012-0975-5
134 rdf:type schema:CreativeWork
135 sg:pub.10.1007/s10700-009-9065-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032275687
136 https://doi.org/10.1007/s10700-009-9065-2
137 rdf:type schema:CreativeWork
138 sg:pub.10.1007/s10700-010-9086-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1036555064
139 https://doi.org/10.1007/s10700-010-9086-x
140 rdf:type schema:CreativeWork
141 grid-institutes:grid.10215.37 schema:alternateName Department of Languages and Computer Sciences, University of Malaga, 29071, Malaga, Spain
142 schema:name Department of Languages and Computer Sciences, University of Malaga, 29071, Malaga, Spain
143 rdf:type schema:Organization
144 grid-institutes:grid.440485.9 schema:alternateName National Technological University, 3500, Resistencia, Argentine
145 schema:name National Technological University, 3500, Resistencia, Argentine
146 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...