A modified learning algorithm for the multilayer neural network with multi-valued neurons based on the complex QR decomposition View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2012-04

AUTHORS

Igor Aizenberg, Antonio Luchetta, Stefano Manetti

ABSTRACT

In this paper, a modified learning algorithm for the multilayer neural network with the multi-valued neurons (MLMVN) is presented. The MLMVN, which is a member of complex-valued neural networks family, has already demonstrated a number of important advantages over other techniques. A modified learning algorithm for this network is based on the introduction of an acceleration step, performing by means of the complex QR decomposition and on the new approach to calculation of the output neurons errors: they are calculated as the differences between the corresponding desired outputs and actual values of the weighted sums. These modifications significantly improve the existing derivative-free backpropagation learning algorithm for the MLMVN in terms of learning speed. A modified learning algorithm requires two orders of magnitude lower number of training epochs and less time for its convergence when compared with the existing learning algorithm. Good performance is confirmed not only by the much quicker convergence of the learning algorithm, but also by the compatible or even higher classification/prediction accuracy, which is obtained by testing over some benchmarks (Mackey–Glass and Jenkins–Box time series) and over some satellite spectral data examined in a comparison test. More... »

PAGES

563-575

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00500-011-0755-7

DOI

http://dx.doi.org/10.1007/s00500-011-0755-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1051979572


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Texas A&M University \u2013 Texarkana", 
          "id": "https://www.grid.ac/institutes/grid.264762.3", 
          "name": [
            "Texas A&M University-Texarkana, 7101 University Ave., 75503, Texarkana, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Aizenberg", 
        "givenName": "Igor", 
        "id": "sg:person.010651634015.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010651634015.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Florence", 
          "id": "https://www.grid.ac/institutes/grid.8404.8", 
          "name": [
            "Department of Electronics and Telecommunications, University of Florence, Via S. Marta 3, 50139, Florence, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Luchetta", 
        "givenName": "Antonio", 
        "id": "sg:person.014225714547.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014225714547.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Florence", 
          "id": "https://www.grid.ac/institutes/grid.8404.8", 
          "name": [
            "Department of Electronics and Telecommunications, University of Florence, Via S. Marta 3, 50139, Florence, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Manetti", 
        "givenName": "Stefano", 
        "id": "sg:person.011320216635.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011320216635.11"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s1364-8152(02)00027-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003593382"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-33457-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004168507", 
          "https://doi.org/10.1007/978-3-540-33457-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-33457-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004168507", 
          "https://doi.org/10.1007/978-3-540-33457-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neunet.2007.07.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004571137"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-45723-2_44", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007354410", 
          "https://doi.org/10.1007/3-540-45723-2_44"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-45723-2_44", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007354410", 
          "https://doi.org/10.1007/3-540-45723-2_44"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-20353-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007584937", 
          "https://doi.org/10.1007/978-3-642-20353-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-20353-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007584937", 
          "https://doi.org/10.1007/978-3-642-20353-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2007.08.028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016681472"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-74690-4_89", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017080962", 
          "https://doi.org/10.1007/978-3-540-74690-4_89"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mmce.20175", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020605833"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0098-3004(03)00137-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023125074"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0098-3004(03)00137-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023125074"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/320941.320947", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027305612"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jqsrt.2004.11.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030922160"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-31182-3_55", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037945160", 
          "https://doi.org/10.1007/3-540-31182-3_55"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00521-004-0423-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041588583", 
          "https://doi.org/10.1007/s00521-004-0423-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00500-006-0075-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049275324", 
          "https://doi.org/10.1007/s00500-006-0075-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00500-006-0075-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049275324", 
          "https://doi.org/10.1007/s00500-006-0075-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1051979123", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-3115-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051979123", 
          "https://doi.org/10.1007/978-1-4757-3115-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-3115-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051979123", 
          "https://doi.org/10.1007/978-1-4757-3115-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/5254.683177", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061186213"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/72.548176", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061218830"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/8.964096", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061235525"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnn.2003.813844", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061716601"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnn.2007.900231", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061717258"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnn.2007.903150", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061717282"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnn.2007.911749", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061717329"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnn.2007.914158", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061717348"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnn.2008.2000577", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061717393"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnn.2009.2028886", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061717594"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnn.2010.2082561", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061717794"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.267326", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062549941"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0129065708001415", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062899134"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cnna.1992.274330", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086276533"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icpr.2000.906153", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094329748"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/1.9781611971217", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098553018"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9780470742624", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098661861"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9780470742624", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098661861"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/1.9780898719574", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098875004"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/0471427950", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109491859"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/0471427950", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109491859"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/0471427950", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109491859"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-04", 
    "datePublishedReg": "2012-04-01", 
    "description": "In this paper, a modified learning algorithm for the multilayer neural network with the multi-valued neurons (MLMVN) is presented. The MLMVN, which is a member of complex-valued neural networks family, has already demonstrated a number of important advantages over other techniques. A modified learning algorithm for this network is based on the introduction of an acceleration step, performing by means of the complex QR decomposition and on the new approach to calculation of the output neurons errors: they are calculated as the differences between the corresponding desired outputs and actual values of the weighted sums. These modifications significantly improve the existing derivative-free backpropagation learning algorithm for the MLMVN in terms of learning speed. A modified learning algorithm requires two orders of magnitude lower number of training epochs and less time for its convergence when compared with the existing learning algorithm. Good performance is confirmed not only by the much quicker convergence of the learning algorithm, but also by the compatible or even higher classification/prediction accuracy, which is obtained by testing over some benchmarks (Mackey\u2013Glass and Jenkins\u2013Box time series) and over some satellite spectral data examined in a comparison test.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00500-011-0755-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3104551", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1050238", 
        "issn": [
          "1432-7643", 
          "1433-7479"
        ], 
        "name": "Soft Computing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "16"
      }
    ], 
    "name": "A modified learning algorithm for the multilayer neural network with multi-valued neurons based on the complex QR decomposition", 
    "pagination": "563-575", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "f79994055f00a02a818b851e185406b62e3deef20aac829f71a9bdfa1fc19832"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00500-011-0755-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1051979572"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00500-011-0755-7", 
      "https://app.dimensions.ai/details/publication/pub.1051979572"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:20", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000596.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00500-011-0755-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00500-011-0755-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00500-011-0755-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00500-011-0755-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00500-011-0755-7'


 

This table displays all metadata directly associated to this object as RDF triples.

192 TRIPLES      21 PREDICATES      62 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00500-011-0755-7 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N9e4b59b272284531aff168ae3820d5a0
4 schema:citation sg:pub.10.1007/3-540-31182-3_55
5 sg:pub.10.1007/3-540-45723-2_44
6 sg:pub.10.1007/978-1-4757-3115-6
7 sg:pub.10.1007/978-3-540-33457-6
8 sg:pub.10.1007/978-3-540-74690-4_89
9 sg:pub.10.1007/978-3-642-20353-4
10 sg:pub.10.1007/s00500-006-0075-5
11 sg:pub.10.1007/s00521-004-0423-2
12 https://app.dimensions.ai/details/publication/pub.1051979123
13 https://doi.org/10.1002/0471427950
14 https://doi.org/10.1002/9780470742624
15 https://doi.org/10.1002/mmce.20175
16 https://doi.org/10.1016/j.jqsrt.2004.11.016
17 https://doi.org/10.1016/j.neucom.2007.08.028
18 https://doi.org/10.1016/j.neunet.2007.07.008
19 https://doi.org/10.1016/s0098-3004(03)00137-7
20 https://doi.org/10.1016/s1364-8152(02)00027-0
21 https://doi.org/10.1109/5254.683177
22 https://doi.org/10.1109/72.548176
23 https://doi.org/10.1109/8.964096
24 https://doi.org/10.1109/cnna.1992.274330
25 https://doi.org/10.1109/icpr.2000.906153
26 https://doi.org/10.1109/tnn.2003.813844
27 https://doi.org/10.1109/tnn.2007.900231
28 https://doi.org/10.1109/tnn.2007.903150
29 https://doi.org/10.1109/tnn.2007.911749
30 https://doi.org/10.1109/tnn.2007.914158
31 https://doi.org/10.1109/tnn.2008.2000577
32 https://doi.org/10.1109/tnn.2009.2028886
33 https://doi.org/10.1109/tnn.2010.2082561
34 https://doi.org/10.1126/science.267326
35 https://doi.org/10.1137/1.9780898719574
36 https://doi.org/10.1137/1.9781611971217
37 https://doi.org/10.1142/s0129065708001415
38 https://doi.org/10.1145/320941.320947
39 schema:datePublished 2012-04
40 schema:datePublishedReg 2012-04-01
41 schema:description In this paper, a modified learning algorithm for the multilayer neural network with the multi-valued neurons (MLMVN) is presented. The MLMVN, which is a member of complex-valued neural networks family, has already demonstrated a number of important advantages over other techniques. A modified learning algorithm for this network is based on the introduction of an acceleration step, performing by means of the complex QR decomposition and on the new approach to calculation of the output neurons errors: they are calculated as the differences between the corresponding desired outputs and actual values of the weighted sums. These modifications significantly improve the existing derivative-free backpropagation learning algorithm for the MLMVN in terms of learning speed. A modified learning algorithm requires two orders of magnitude lower number of training epochs and less time for its convergence when compared with the existing learning algorithm. Good performance is confirmed not only by the much quicker convergence of the learning algorithm, but also by the compatible or even higher classification/prediction accuracy, which is obtained by testing over some benchmarks (Mackey–Glass and Jenkins–Box time series) and over some satellite spectral data examined in a comparison test.
42 schema:genre research_article
43 schema:inLanguage en
44 schema:isAccessibleForFree false
45 schema:isPartOf N15210de148374f2ca8d73dc13b6ce537
46 N774ad51646f64a1280070659e1d20f43
47 sg:journal.1050238
48 schema:name A modified learning algorithm for the multilayer neural network with multi-valued neurons based on the complex QR decomposition
49 schema:pagination 563-575
50 schema:productId N7265a89db9a749e5b9fadd86b43d4162
51 N9759f813a5ef4e598f4df5d5e100e520
52 Ne96f61b280fc4fa38ac872d645ba9756
53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051979572
54 https://doi.org/10.1007/s00500-011-0755-7
55 schema:sdDatePublished 2019-04-10T19:20
56 schema:sdLicense https://scigraph.springernature.com/explorer/license/
57 schema:sdPublisher N288b3f3ad46545c1b47a559a9fdbf55b
58 schema:url http://link.springer.com/10.1007%2Fs00500-011-0755-7
59 sgo:license sg:explorer/license/
60 sgo:sdDataset articles
61 rdf:type schema:ScholarlyArticle
62 N15210de148374f2ca8d73dc13b6ce537 schema:volumeNumber 16
63 rdf:type schema:PublicationVolume
64 N288b3f3ad46545c1b47a559a9fdbf55b schema:name Springer Nature - SN SciGraph project
65 rdf:type schema:Organization
66 N7265a89db9a749e5b9fadd86b43d4162 schema:name readcube_id
67 schema:value f79994055f00a02a818b851e185406b62e3deef20aac829f71a9bdfa1fc19832
68 rdf:type schema:PropertyValue
69 N774ad51646f64a1280070659e1d20f43 schema:issueNumber 4
70 rdf:type schema:PublicationIssue
71 N9388404be23c4261b453f839ceaf1f78 rdf:first sg:person.014225714547.49
72 rdf:rest N9aeaec4774cc45dd9719ce640fb96cc4
73 N9759f813a5ef4e598f4df5d5e100e520 schema:name dimensions_id
74 schema:value pub.1051979572
75 rdf:type schema:PropertyValue
76 N9aeaec4774cc45dd9719ce640fb96cc4 rdf:first sg:person.011320216635.11
77 rdf:rest rdf:nil
78 N9e4b59b272284531aff168ae3820d5a0 rdf:first sg:person.010651634015.21
79 rdf:rest N9388404be23c4261b453f839ceaf1f78
80 Ne96f61b280fc4fa38ac872d645ba9756 schema:name doi
81 schema:value 10.1007/s00500-011-0755-7
82 rdf:type schema:PropertyValue
83 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
84 schema:name Information and Computing Sciences
85 rdf:type schema:DefinedTerm
86 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
87 schema:name Artificial Intelligence and Image Processing
88 rdf:type schema:DefinedTerm
89 sg:grant.3104551 http://pending.schema.org/fundedItem sg:pub.10.1007/s00500-011-0755-7
90 rdf:type schema:MonetaryGrant
91 sg:journal.1050238 schema:issn 1432-7643
92 1433-7479
93 schema:name Soft Computing
94 rdf:type schema:Periodical
95 sg:person.010651634015.21 schema:affiliation https://www.grid.ac/institutes/grid.264762.3
96 schema:familyName Aizenberg
97 schema:givenName Igor
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010651634015.21
99 rdf:type schema:Person
100 sg:person.011320216635.11 schema:affiliation https://www.grid.ac/institutes/grid.8404.8
101 schema:familyName Manetti
102 schema:givenName Stefano
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011320216635.11
104 rdf:type schema:Person
105 sg:person.014225714547.49 schema:affiliation https://www.grid.ac/institutes/grid.8404.8
106 schema:familyName Luchetta
107 schema:givenName Antonio
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014225714547.49
109 rdf:type schema:Person
110 sg:pub.10.1007/3-540-31182-3_55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037945160
111 https://doi.org/10.1007/3-540-31182-3_55
112 rdf:type schema:CreativeWork
113 sg:pub.10.1007/3-540-45723-2_44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007354410
114 https://doi.org/10.1007/3-540-45723-2_44
115 rdf:type schema:CreativeWork
116 sg:pub.10.1007/978-1-4757-3115-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051979123
117 https://doi.org/10.1007/978-1-4757-3115-6
118 rdf:type schema:CreativeWork
119 sg:pub.10.1007/978-3-540-33457-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004168507
120 https://doi.org/10.1007/978-3-540-33457-6
121 rdf:type schema:CreativeWork
122 sg:pub.10.1007/978-3-540-74690-4_89 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017080962
123 https://doi.org/10.1007/978-3-540-74690-4_89
124 rdf:type schema:CreativeWork
125 sg:pub.10.1007/978-3-642-20353-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007584937
126 https://doi.org/10.1007/978-3-642-20353-4
127 rdf:type schema:CreativeWork
128 sg:pub.10.1007/s00500-006-0075-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049275324
129 https://doi.org/10.1007/s00500-006-0075-5
130 rdf:type schema:CreativeWork
131 sg:pub.10.1007/s00521-004-0423-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041588583
132 https://doi.org/10.1007/s00521-004-0423-2
133 rdf:type schema:CreativeWork
134 https://app.dimensions.ai/details/publication/pub.1051979123 schema:CreativeWork
135 https://doi.org/10.1002/0471427950 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109491859
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1002/9780470742624 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098661861
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1002/mmce.20175 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020605833
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/j.jqsrt.2004.11.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030922160
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/j.neucom.2007.08.028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016681472
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/j.neunet.2007.07.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004571137
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/s0098-3004(03)00137-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023125074
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/s1364-8152(02)00027-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003593382
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1109/5254.683177 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061186213
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1109/72.548176 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061218830
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1109/8.964096 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061235525
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1109/cnna.1992.274330 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086276533
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1109/icpr.2000.906153 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094329748
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1109/tnn.2003.813844 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061716601
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1109/tnn.2007.900231 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061717258
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1109/tnn.2007.903150 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061717282
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1109/tnn.2007.911749 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061717329
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1109/tnn.2007.914158 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061717348
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1109/tnn.2008.2000577 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061717393
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1109/tnn.2009.2028886 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061717594
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1109/tnn.2010.2082561 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061717794
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1126/science.267326 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062549941
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1137/1.9780898719574 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098875004
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1137/1.9781611971217 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098553018
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1142/s0129065708001415 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062899134
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1145/320941.320947 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027305612
186 rdf:type schema:CreativeWork
187 https://www.grid.ac/institutes/grid.264762.3 schema:alternateName Texas A&M University – Texarkana
188 schema:name Texas A&M University-Texarkana, 7101 University Ave., 75503, Texarkana, TX, USA
189 rdf:type schema:Organization
190 https://www.grid.ac/institutes/grid.8404.8 schema:alternateName University of Florence
191 schema:name Department of Electronics and Telecommunications, University of Florence, Via S. Marta 3, 50139, Florence, Italy
192 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...