Parameter determination and feature selection for C4.5 algorithm using scatter search approach View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2012-01

AUTHORS

Shih-Wei Lin, Shih-Chieh Chen

ABSTRACT

The C4.5 decision tree (DT) can be applied in various fields and discovers knowledge for human understanding. However, different problems typically require different parameter settings. Rule of thumb or trial-and-error methods are generally utilized to determine parameter settings. However, these methods may result in poor parameter settings and unsatisfactory results. On the other hand, although a dataset can contain numerous features, not all features are beneficial for classification in C4.5 algorithm. Therefore, a novel scatter search-based approach (SS + DT) is proposed to acquire optimal parameter settings and to select the beneficial subset of features that result in better classification results. To evaluate the efficiency of the proposed SS + DT approach, datasets in the UCI (University of California, Irvine) Machine Learning Repository are utilized to assess the performance of the proposed approach. Experimental results demonstrate that the parameter settings for the C4.5 algorithm obtained by the SS + DT approach are better than those obtained by other approaches. When feature selection is considered, classification accuracy rates on most datasets are increased. Therefore, the proposed approach can be utilized to identify effectively the best parameter settings for C4.5 algorithm and useful features. More... »

PAGES

63-75

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00500-011-0734-z

DOI

http://dx.doi.org/10.1007/s00500-011-0734-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1021093979


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Chang Gung University", 
          "id": "https://www.grid.ac/institutes/grid.145695.a", 
          "name": [
            "Department of Information Management, Chang Gung University, Taoyuan, Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lin", 
        "givenName": "Shih-Wei", 
        "id": "sg:person.015224610754.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015224610754.94"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Taiwan University of Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.45907.3f", 
          "name": [
            "Department of Information Management, Chang Gung University, Taoyuan, Taiwan", 
            "Department of Industrial Management, National Taiwan University of Science and Technology, Taipei, Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Shih-Chieh", 
        "id": "sg:person.015532325677.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015532325677.28"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.engappai.2004.03.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001017712"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejor.2004.08.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002808236"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.csda.2007.03.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003048828"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0026589", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007026552", 
          "https://doi.org/10.1007/bfb0026589"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.patcog.2005.11.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009610573"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0305-0483(95)00036-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010228706"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1568-4946(02)00031-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010704936"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1568-4946(02)00031-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010704936"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1057/palgrave.jors.2601888", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017711318", 
          "https://doi.org/10.1057/palgrave.jors.2601888"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1057/palgrave.jors.2601888", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017711318", 
          "https://doi.org/10.1057/palgrave.jors.2601888"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2006.08.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018804563"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00116251", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019422208", 
          "https://doi.org/10.1007/bf00116251"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1020054645", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4615-5689-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020054645", 
          "https://doi.org/10.1007/978-1-4615-5689-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4615-5689-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020054645", 
          "https://doi.org/10.1007/978-1-4615-5689-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1020980189", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4615-0337-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020980189", 
          "https://doi.org/10.1007/978-1-4615-0337-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-1-55860-377-6.50045-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022049348"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ymssp.2006.06.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024814407"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/0020754031000090612", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026345108"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1009752403260", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028840786", 
          "https://doi.org/10.1023/a:1009752403260"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-32358-9_3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029329174", 
          "https://doi.org/10.1007/3-540-32358-9_3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1540-5915.1977.tb01074.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029929557"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0020-7373(87)80053-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033024038"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11790853_28", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037370117", 
          "https://doi.org/10.1007/11790853_28"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11790853_28", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037370117", 
          "https://doi.org/10.1007/11790853_28"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-8655(01)00019-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039419237"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cor.2005.12.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040305533"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejor.2004.08.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045401696"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.csda.2003.11.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049869265"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-01", 
    "datePublishedReg": "2012-01-01", 
    "description": "The C4.5 decision tree (DT) can be applied in various fields and discovers knowledge for human understanding. However, different problems typically require different parameter settings. Rule of thumb or trial-and-error methods are generally utilized to determine parameter settings. However, these methods may result in poor parameter settings and unsatisfactory results. On the other hand, although a dataset can contain numerous features, not all features are beneficial for classification in C4.5 algorithm. Therefore, a novel scatter search-based approach (SS + DT) is proposed to acquire optimal parameter settings and to select the beneficial subset of features that result in better classification results. To evaluate the efficiency of the proposed SS + DT approach, datasets in the UCI (University of California, Irvine) Machine Learning Repository are utilized to assess the performance of the proposed approach. Experimental results demonstrate that the parameter settings for the C4.5 algorithm obtained by the SS + DT approach are better than those obtained by other approaches. When feature selection is considered, classification accuracy rates on most datasets are increased. Therefore, the proposed approach can be utilized to identify effectively the best parameter settings for C4.5 algorithm and useful features.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00500-011-0734-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1050238", 
        "issn": [
          "1432-7643", 
          "1433-7479"
        ], 
        "name": "Soft Computing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "16"
      }
    ], 
    "name": "Parameter determination and feature selection for C4.5 algorithm using scatter search approach", 
    "pagination": "63-75", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "6480b436ef2bfafc8fd1c1c30a844c17d356be3f3af2dae793c13a27918916e8"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00500-011-0734-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1021093979"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00500-011-0734-z", 
      "https://app.dimensions.ai/details/publication/pub.1021093979"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T20:47", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000512.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00500-011-0734-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00500-011-0734-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00500-011-0734-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00500-011-0734-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00500-011-0734-z'


 

This table displays all metadata directly associated to this object as RDF triples.

156 TRIPLES      21 PREDICATES      53 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00500-011-0734-z schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Ndd9d6426df294e499dd4d0465dedfbcd
4 schema:citation sg:pub.10.1007/11790853_28
5 sg:pub.10.1007/3-540-32358-9_3
6 sg:pub.10.1007/978-1-4615-0337-8
7 sg:pub.10.1007/978-1-4615-5689-3
8 sg:pub.10.1007/bf00116251
9 sg:pub.10.1007/bfb0026589
10 sg:pub.10.1023/a:1009752403260
11 sg:pub.10.1057/palgrave.jors.2601888
12 https://app.dimensions.ai/details/publication/pub.1020054645
13 https://app.dimensions.ai/details/publication/pub.1020980189
14 https://doi.org/10.1016/0305-0483(95)00036-4
15 https://doi.org/10.1016/b978-1-55860-377-6.50045-1
16 https://doi.org/10.1016/j.cor.2005.12.009
17 https://doi.org/10.1016/j.csda.2003.11.005
18 https://doi.org/10.1016/j.csda.2007.03.014
19 https://doi.org/10.1016/j.ejor.2004.08.003
20 https://doi.org/10.1016/j.ejor.2004.08.010
21 https://doi.org/10.1016/j.engappai.2004.03.005
22 https://doi.org/10.1016/j.eswa.2006.08.008
23 https://doi.org/10.1016/j.patcog.2005.11.007
24 https://doi.org/10.1016/j.ymssp.2006.06.010
25 https://doi.org/10.1016/s0020-7373(87)80053-6
26 https://doi.org/10.1016/s0167-8655(01)00019-8
27 https://doi.org/10.1016/s1568-4946(02)00031-5
28 https://doi.org/10.1080/0020754031000090612
29 https://doi.org/10.1111/j.1540-5915.1977.tb01074.x
30 schema:datePublished 2012-01
31 schema:datePublishedReg 2012-01-01
32 schema:description The C4.5 decision tree (DT) can be applied in various fields and discovers knowledge for human understanding. However, different problems typically require different parameter settings. Rule of thumb or trial-and-error methods are generally utilized to determine parameter settings. However, these methods may result in poor parameter settings and unsatisfactory results. On the other hand, although a dataset can contain numerous features, not all features are beneficial for classification in C4.5 algorithm. Therefore, a novel scatter search-based approach (SS + DT) is proposed to acquire optimal parameter settings and to select the beneficial subset of features that result in better classification results. To evaluate the efficiency of the proposed SS + DT approach, datasets in the UCI (University of California, Irvine) Machine Learning Repository are utilized to assess the performance of the proposed approach. Experimental results demonstrate that the parameter settings for the C4.5 algorithm obtained by the SS + DT approach are better than those obtained by other approaches. When feature selection is considered, classification accuracy rates on most datasets are increased. Therefore, the proposed approach can be utilized to identify effectively the best parameter settings for C4.5 algorithm and useful features.
33 schema:genre research_article
34 schema:inLanguage en
35 schema:isAccessibleForFree false
36 schema:isPartOf N282d7f1c17dd47ed9a0e82c2f4c30baf
37 N289beb9c0835436b95d764c9f1501868
38 sg:journal.1050238
39 schema:name Parameter determination and feature selection for C4.5 algorithm using scatter search approach
40 schema:pagination 63-75
41 schema:productId N2cd4264f626547b1acca35fdcab813c2
42 N6930579f6a604771ba100d44011d0639
43 Ndce6f41be72743238fb769a0b72524aa
44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021093979
45 https://doi.org/10.1007/s00500-011-0734-z
46 schema:sdDatePublished 2019-04-10T20:47
47 schema:sdLicense https://scigraph.springernature.com/explorer/license/
48 schema:sdPublisher Nced9d6a721a14c7989478a484e6e5e1c
49 schema:url http://link.springer.com/10.1007%2Fs00500-011-0734-z
50 sgo:license sg:explorer/license/
51 sgo:sdDataset articles
52 rdf:type schema:ScholarlyArticle
53 N282d7f1c17dd47ed9a0e82c2f4c30baf schema:issueNumber 1
54 rdf:type schema:PublicationIssue
55 N289beb9c0835436b95d764c9f1501868 schema:volumeNumber 16
56 rdf:type schema:PublicationVolume
57 N2cd4264f626547b1acca35fdcab813c2 schema:name readcube_id
58 schema:value 6480b436ef2bfafc8fd1c1c30a844c17d356be3f3af2dae793c13a27918916e8
59 rdf:type schema:PropertyValue
60 N6930579f6a604771ba100d44011d0639 schema:name doi
61 schema:value 10.1007/s00500-011-0734-z
62 rdf:type schema:PropertyValue
63 Nced9d6a721a14c7989478a484e6e5e1c schema:name Springer Nature - SN SciGraph project
64 rdf:type schema:Organization
65 Ndce6f41be72743238fb769a0b72524aa schema:name dimensions_id
66 schema:value pub.1021093979
67 rdf:type schema:PropertyValue
68 Ndd9d6426df294e499dd4d0465dedfbcd rdf:first sg:person.015224610754.94
69 rdf:rest Ne0a102e823bd405d9602fe4da33f53d2
70 Ne0a102e823bd405d9602fe4da33f53d2 rdf:first sg:person.015532325677.28
71 rdf:rest rdf:nil
72 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
73 schema:name Information and Computing Sciences
74 rdf:type schema:DefinedTerm
75 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
76 schema:name Artificial Intelligence and Image Processing
77 rdf:type schema:DefinedTerm
78 sg:journal.1050238 schema:issn 1432-7643
79 1433-7479
80 schema:name Soft Computing
81 rdf:type schema:Periodical
82 sg:person.015224610754.94 schema:affiliation https://www.grid.ac/institutes/grid.145695.a
83 schema:familyName Lin
84 schema:givenName Shih-Wei
85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015224610754.94
86 rdf:type schema:Person
87 sg:person.015532325677.28 schema:affiliation https://www.grid.ac/institutes/grid.45907.3f
88 schema:familyName Chen
89 schema:givenName Shih-Chieh
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015532325677.28
91 rdf:type schema:Person
92 sg:pub.10.1007/11790853_28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037370117
93 https://doi.org/10.1007/11790853_28
94 rdf:type schema:CreativeWork
95 sg:pub.10.1007/3-540-32358-9_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029329174
96 https://doi.org/10.1007/3-540-32358-9_3
97 rdf:type schema:CreativeWork
98 sg:pub.10.1007/978-1-4615-0337-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020980189
99 https://doi.org/10.1007/978-1-4615-0337-8
100 rdf:type schema:CreativeWork
101 sg:pub.10.1007/978-1-4615-5689-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020054645
102 https://doi.org/10.1007/978-1-4615-5689-3
103 rdf:type schema:CreativeWork
104 sg:pub.10.1007/bf00116251 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019422208
105 https://doi.org/10.1007/bf00116251
106 rdf:type schema:CreativeWork
107 sg:pub.10.1007/bfb0026589 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007026552
108 https://doi.org/10.1007/bfb0026589
109 rdf:type schema:CreativeWork
110 sg:pub.10.1023/a:1009752403260 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028840786
111 https://doi.org/10.1023/a:1009752403260
112 rdf:type schema:CreativeWork
113 sg:pub.10.1057/palgrave.jors.2601888 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017711318
114 https://doi.org/10.1057/palgrave.jors.2601888
115 rdf:type schema:CreativeWork
116 https://app.dimensions.ai/details/publication/pub.1020054645 schema:CreativeWork
117 https://app.dimensions.ai/details/publication/pub.1020980189 schema:CreativeWork
118 https://doi.org/10.1016/0305-0483(95)00036-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010228706
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/b978-1-55860-377-6.50045-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022049348
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/j.cor.2005.12.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040305533
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/j.csda.2003.11.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049869265
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/j.csda.2007.03.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003048828
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/j.ejor.2004.08.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002808236
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/j.ejor.2004.08.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045401696
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/j.engappai.2004.03.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001017712
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/j.eswa.2006.08.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018804563
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/j.patcog.2005.11.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009610573
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/j.ymssp.2006.06.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024814407
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/s0020-7373(87)80053-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033024038
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/s0167-8655(01)00019-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039419237
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/s1568-4946(02)00031-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010704936
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1080/0020754031000090612 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026345108
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1111/j.1540-5915.1977.tb01074.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1029929557
149 rdf:type schema:CreativeWork
150 https://www.grid.ac/institutes/grid.145695.a schema:alternateName Chang Gung University
151 schema:name Department of Information Management, Chang Gung University, Taoyuan, Taiwan
152 rdf:type schema:Organization
153 https://www.grid.ac/institutes/grid.45907.3f schema:alternateName National Taiwan University of Science and Technology
154 schema:name Department of Industrial Management, National Taiwan University of Science and Technology, Taipei, Taiwan
155 Department of Information Management, Chang Gung University, Taoyuan, Taiwan
156 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...