Big Ramsey Degrees of 3-Uniform Hypergraphs are Finite View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2022-02-18

AUTHORS

Martin Balko, David Chodounský, Jan Hubička, Matěj Konečný, Lluis Vena

ABSTRACT

We prove that the universal homogeneous 3-uniform hypergraph has finite big Ramsey degrees. This is the first case where big Ramsey degrees are known to be finite for structures in a non-binary language.Our proof is based on the vector (or product) form of Milliken’s Tree Theorem and demonstrates a general method to carry existing results on structures in binary relational languages to higher arities. More... »

PAGES

1-14

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00493-021-4664-9

DOI

http://dx.doi.org/10.1007/s00493-021-4664-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1145698747


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Applied Mathematics (KAM), Charles University, Malostransk\u00e9 n\u00e1m\u011bst\u00ed 25, Praha 1, Czech Republic", 
          "id": "http://www.grid.ac/institutes/grid.4491.8", 
          "name": [
            "Department of Applied Mathematics (KAM), Charles University, Malostransk\u00e9 n\u00e1m\u011bst\u00ed 25, Praha 1, Czech Republic"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Balko", 
        "givenName": "Martin", 
        "id": "sg:person.013606717367.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013606717367.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Applied Mathematics (KAM), Charles University, Malostransk\u00e9 n\u00e1m\u011bst\u00ed 25, Praha 1, Czech Republic", 
          "id": "http://www.grid.ac/institutes/grid.4491.8", 
          "name": [
            "Department of Applied Mathematics (KAM), Charles University, Malostransk\u00e9 n\u00e1m\u011bst\u00ed 25, Praha 1, Czech Republic"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chodounsk\u00fd", 
        "givenName": "David", 
        "id": "sg:person.010253116033.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010253116033.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Applied Mathematics (KAM), Charles University, Malostransk\u00e9 n\u00e1m\u011bst\u00ed 25, Praha 1, Czech Republic", 
          "id": "http://www.grid.ac/institutes/grid.4491.8", 
          "name": [
            "Department of Applied Mathematics (KAM), Charles University, Malostransk\u00e9 n\u00e1m\u011bst\u00ed 25, Praha 1, Czech Republic"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hubi\u010dka", 
        "givenName": "Jan", 
        "id": "sg:person.016520433143.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016520433143.77"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Applied Mathematics (KAM), Charles University, Malostransk\u00e9 n\u00e1m\u011bst\u00ed 25, Praha 1, Czech Republic", 
          "id": "http://www.grid.ac/institutes/grid.4491.8", 
          "name": [
            "Department of Applied Mathematics (KAM), Charles University, Malostransk\u00e9 n\u00e1m\u011bst\u00ed 25, Praha 1, Czech Republic"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kone\u010dn\u00fd", 
        "givenName": "Mat\u011bj", 
        "id": "sg:person.012062310754.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012062310754.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, Universitat Polit\u00e8cnica de Catalunya, Jordi Girona 1-3, Barcelona, Spain", 
          "id": "http://www.grid.ac/institutes/grid.6835.8", 
          "name": [
            "Department of Mathematics, Universitat Polit\u00e8cnica de Catalunya, Jordi Girona 1-3, Barcelona, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vena", 
        "givenName": "Lluis", 
        "id": "sg:person.014572202301.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014572202301.33"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00039-005-0503-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039200861", 
          "https://doi.org/10.1007/s00039-005-0503-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00493-010-2445-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049076530", 
          "https://doi.org/10.1007/s00493-010-2445-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00493-006-0015-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001047774", 
          "https://doi.org/10.1007/s00493-006-0015-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00493-006-0013-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051683870", 
          "https://doi.org/10.1007/s00493-006-0013-2"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2022-02-18", 
    "datePublishedReg": "2022-02-18", 
    "description": "We prove that the universal homogeneous 3-uniform hypergraph has finite big Ramsey degrees. This is the first case where big Ramsey degrees are known to be finite for structures in a non-binary language.Our proof is based on the vector (or product) form of Milliken\u2019s Tree Theorem and demonstrates a general method to carry existing results on structures in binary relational languages to higher arities.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00493-021-4664-9", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136493", 
        "issn": [
          "0209-9683", 
          "1439-6912"
        ], 
        "name": "Combinatorica", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }
    ], 
    "keywords": [
      "relational language", 
      "language", 
      "form", 
      "structure", 
      "general method", 
      "arity", 
      "proof", 
      "tree theorem", 
      "degree", 
      "method", 
      "first case", 
      "cases", 
      "vector form", 
      "results", 
      "hypergraphs", 
      "theorem", 
      "Ramsey degrees", 
      "higher arity"
    ], 
    "name": "Big Ramsey Degrees of 3-Uniform Hypergraphs are Finite", 
    "pagination": "1-14", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1145698747"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00493-021-4664-9"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00493-021-4664-9", 
      "https://app.dimensions.ai/details/publication/pub.1145698747"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T16:08", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_949.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00493-021-4664-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00493-021-4664-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00493-021-4664-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00493-021-4664-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00493-021-4664-9'


 

This table displays all metadata directly associated to this object as RDF triples.

116 TRIPLES      21 PREDICATES      44 URIs      32 LITERALS      4 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00493-021-4664-9 schema:about anzsrc-for:01
2 anzsrc-for:08
3 schema:author N7b2646d184ac49bd832cec5b108b55c4
4 schema:citation sg:pub.10.1007/s00039-005-0503-1
5 sg:pub.10.1007/s00493-006-0013-2
6 sg:pub.10.1007/s00493-006-0015-0
7 sg:pub.10.1007/s00493-010-2445-y
8 schema:datePublished 2022-02-18
9 schema:datePublishedReg 2022-02-18
10 schema:description We prove that the universal homogeneous 3-uniform hypergraph has finite big Ramsey degrees. This is the first case where big Ramsey degrees are known to be finite for structures in a non-binary language.Our proof is based on the vector (or product) form of Milliken’s Tree Theorem and demonstrates a general method to carry existing results on structures in binary relational languages to higher arities.
11 schema:genre article
12 schema:isAccessibleForFree true
13 schema:isPartOf sg:journal.1136493
14 schema:keywords Ramsey degrees
15 arity
16 cases
17 degree
18 first case
19 form
20 general method
21 higher arity
22 hypergraphs
23 language
24 method
25 proof
26 relational language
27 results
28 structure
29 theorem
30 tree theorem
31 vector form
32 schema:name Big Ramsey Degrees of 3-Uniform Hypergraphs are Finite
33 schema:pagination 1-14
34 schema:productId N244820faebb74ec186e081b64a15d35a
35 N9e6504c06f2144f5af47fce405b614c0
36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1145698747
37 https://doi.org/10.1007/s00493-021-4664-9
38 schema:sdDatePublished 2022-09-02T16:08
39 schema:sdLicense https://scigraph.springernature.com/explorer/license/
40 schema:sdPublisher N8ff11e2b5dc24a6da4dd7b7c743f7c73
41 schema:url https://doi.org/10.1007/s00493-021-4664-9
42 sgo:license sg:explorer/license/
43 sgo:sdDataset articles
44 rdf:type schema:ScholarlyArticle
45 N1cf07872dbaf409281f893198b879baf rdf:first sg:person.014572202301.33
46 rdf:rest rdf:nil
47 N244820faebb74ec186e081b64a15d35a schema:name doi
48 schema:value 10.1007/s00493-021-4664-9
49 rdf:type schema:PropertyValue
50 N37eb2820f110448889830e5d398a405a rdf:first sg:person.010253116033.16
51 rdf:rest Nc1fedb7cdd524e8b8f51748cb1e7bb25
52 N7b2646d184ac49bd832cec5b108b55c4 rdf:first sg:person.013606717367.03
53 rdf:rest N37eb2820f110448889830e5d398a405a
54 N81024a8a8e864697ba6dfef0bcb3b475 rdf:first sg:person.012062310754.97
55 rdf:rest N1cf07872dbaf409281f893198b879baf
56 N8ff11e2b5dc24a6da4dd7b7c743f7c73 schema:name Springer Nature - SN SciGraph project
57 rdf:type schema:Organization
58 N9e6504c06f2144f5af47fce405b614c0 schema:name dimensions_id
59 schema:value pub.1145698747
60 rdf:type schema:PropertyValue
61 Nc1fedb7cdd524e8b8f51748cb1e7bb25 rdf:first sg:person.016520433143.77
62 rdf:rest N81024a8a8e864697ba6dfef0bcb3b475
63 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
64 schema:name Mathematical Sciences
65 rdf:type schema:DefinedTerm
66 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
67 schema:name Information and Computing Sciences
68 rdf:type schema:DefinedTerm
69 sg:journal.1136493 schema:issn 0209-9683
70 1439-6912
71 schema:name Combinatorica
72 schema:publisher Springer Nature
73 rdf:type schema:Periodical
74 sg:person.010253116033.16 schema:affiliation grid-institutes:grid.4491.8
75 schema:familyName Chodounský
76 schema:givenName David
77 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010253116033.16
78 rdf:type schema:Person
79 sg:person.012062310754.97 schema:affiliation grid-institutes:grid.4491.8
80 schema:familyName Konečný
81 schema:givenName Matěj
82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012062310754.97
83 rdf:type schema:Person
84 sg:person.013606717367.03 schema:affiliation grid-institutes:grid.4491.8
85 schema:familyName Balko
86 schema:givenName Martin
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013606717367.03
88 rdf:type schema:Person
89 sg:person.014572202301.33 schema:affiliation grid-institutes:grid.6835.8
90 schema:familyName Vena
91 schema:givenName Lluis
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014572202301.33
93 rdf:type schema:Person
94 sg:person.016520433143.77 schema:affiliation grid-institutes:grid.4491.8
95 schema:familyName Hubička
96 schema:givenName Jan
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016520433143.77
98 rdf:type schema:Person
99 sg:pub.10.1007/s00039-005-0503-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039200861
100 https://doi.org/10.1007/s00039-005-0503-1
101 rdf:type schema:CreativeWork
102 sg:pub.10.1007/s00493-006-0013-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051683870
103 https://doi.org/10.1007/s00493-006-0013-2
104 rdf:type schema:CreativeWork
105 sg:pub.10.1007/s00493-006-0015-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001047774
106 https://doi.org/10.1007/s00493-006-0015-0
107 rdf:type schema:CreativeWork
108 sg:pub.10.1007/s00493-010-2445-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1049076530
109 https://doi.org/10.1007/s00493-010-2445-y
110 rdf:type schema:CreativeWork
111 grid-institutes:grid.4491.8 schema:alternateName Department of Applied Mathematics (KAM), Charles University, Malostranské náměstí 25, Praha 1, Czech Republic
112 schema:name Department of Applied Mathematics (KAM), Charles University, Malostranské náměstí 25, Praha 1, Czech Republic
113 rdf:type schema:Organization
114 grid-institutes:grid.6835.8 schema:alternateName Department of Mathematics, Universitat Politècnica de Catalunya, Jordi Girona 1-3, Barcelona, Spain
115 schema:name Department of Mathematics, Universitat Politècnica de Catalunya, Jordi Girona 1-3, Barcelona, Spain
116 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...