Fractional Isomorphism of Graphons View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2022-03-14

AUTHORS

Jan Grebík, Israel Rocha

ABSTRACT

We work out the theory of fractional isomorphism of graphons as a generalization to the classical theory of fractional isomorphism of finite graphs. The generalization is given in terms of homomorphism densities of finite trees and it is characterized in terms of distributions on iterated degree measures, Markov operators, weak isomorphism of a conditional expectation with respect to invariant sub-σ-algebras and isomorphism of certain quotients of given graphons. More... »

PAGES

1-40

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00493-021-4336-9

DOI

http://dx.doi.org/10.1007/s00493-021-4336-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1146254933


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Mathematics Institute, University of Warwick, CV4 7AL, Coventry, UK", 
          "id": "http://www.grid.ac/institutes/grid.7372.1", 
          "name": [
            "Mathematics Institute, University of Warwick, CV4 7AL, Coventry, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Greb\u00edk", 
        "givenName": "Jan", 
        "id": "sg:person.014176561231.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014176561231.95"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Computer Science of the Czech Academy of Sciences, Pod Vod\u00e1renskou v\u011b\u017e\u00ed 2, 182 07, Prague, Czechia", 
          "id": "http://www.grid.ac/institutes/grid.448092.3", 
          "name": [
            "Institute of Computer Science of the Czech Academy of Sciences, Pod Vod\u00e1renskou v\u011b\u017e\u00ed 2, 182 07, Prague, Czechia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rocha", 
        "givenName": "Israel", 
        "id": "sg:person.011473206405.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011473206405.64"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-319-16898-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002426422", 
          "https://doi.org/10.1007/978-3-319-16898-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-4190-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040723300", 
          "https://doi.org/10.1007/978-1-4612-4190-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-49847-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083763972", 
          "https://doi.org/10.1007/978-3-319-49847-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02240204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044098084", 
          "https://doi.org/10.1007/bf02240204"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02280291", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037031461", 
          "https://doi.org/10.1007/bf02280291"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2022-03-14", 
    "datePublishedReg": "2022-03-14", 
    "description": "We work out the theory of fractional isomorphism of graphons as a generalization to the classical theory of fractional isomorphism of finite graphs. The generalization is given in terms of homomorphism densities of finite trees and it is characterized in terms of distributions on iterated degree measures, Markov operators, weak isomorphism of a conditional expectation with respect to invariant sub-\u03c3-algebras and isomorphism of certain quotients of given graphons.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00493-021-4336-9", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136493", 
        "issn": [
          "0209-9683", 
          "1439-6912"
        ], 
        "name": "Combinatorica", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }
    ], 
    "keywords": [
      "fractional isomorphism", 
      "Markov operators", 
      "homomorphism densities", 
      "finite graphs", 
      "certain quotients", 
      "conditional expectation", 
      "classical theory", 
      "weak isomorphism", 
      "Graphon", 
      "finite trees", 
      "isomorphism", 
      "generalization", 
      "theory", 
      "degree measure", 
      "terms of distribution", 
      "operators", 
      "graph", 
      "terms", 
      "distribution", 
      "quotient", 
      "density", 
      "respect", 
      "trees", 
      "measures", 
      "expectations"
    ], 
    "name": "Fractional Isomorphism of Graphons", 
    "pagination": "1-40", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1146254933"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00493-021-4336-9"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00493-021-4336-9", 
      "https://app.dimensions.ai/details/publication/pub.1146254933"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T16:08", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_950.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00493-021-4336-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00493-021-4336-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00493-021-4336-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00493-021-4336-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00493-021-4336-9'


 

This table displays all metadata directly associated to this object as RDF triples.

106 TRIPLES      21 PREDICATES      52 URIs      39 LITERALS      4 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00493-021-4336-9 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N8380db101d70478a9542a1c612d0b1f7
4 schema:citation sg:pub.10.1007/978-1-4612-4190-4
5 sg:pub.10.1007/978-3-319-16898-2
6 sg:pub.10.1007/978-3-319-49847-8
7 sg:pub.10.1007/bf02240204
8 sg:pub.10.1007/bf02280291
9 schema:datePublished 2022-03-14
10 schema:datePublishedReg 2022-03-14
11 schema:description We work out the theory of fractional isomorphism of graphons as a generalization to the classical theory of fractional isomorphism of finite graphs. The generalization is given in terms of homomorphism densities of finite trees and it is characterized in terms of distributions on iterated degree measures, Markov operators, weak isomorphism of a conditional expectation with respect to invariant sub-σ-algebras and isomorphism of certain quotients of given graphons.
12 schema:genre article
13 schema:isAccessibleForFree true
14 schema:isPartOf sg:journal.1136493
15 schema:keywords Graphon
16 Markov operators
17 certain quotients
18 classical theory
19 conditional expectation
20 degree measure
21 density
22 distribution
23 expectations
24 finite graphs
25 finite trees
26 fractional isomorphism
27 generalization
28 graph
29 homomorphism densities
30 isomorphism
31 measures
32 operators
33 quotient
34 respect
35 terms
36 terms of distribution
37 theory
38 trees
39 weak isomorphism
40 schema:name Fractional Isomorphism of Graphons
41 schema:pagination 1-40
42 schema:productId N862f52da68174b959ca2bde95f2025a3
43 Nf7e97267d0c24b1793760959242fb2b1
44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1146254933
45 https://doi.org/10.1007/s00493-021-4336-9
46 schema:sdDatePublished 2022-09-02T16:08
47 schema:sdLicense https://scigraph.springernature.com/explorer/license/
48 schema:sdPublisher N8474b2bdb64642aa864393b7ce64be8b
49 schema:url https://doi.org/10.1007/s00493-021-4336-9
50 sgo:license sg:explorer/license/
51 sgo:sdDataset articles
52 rdf:type schema:ScholarlyArticle
53 N471361662fdf4f65bdeb1d65977c39fb rdf:first sg:person.011473206405.64
54 rdf:rest rdf:nil
55 N8380db101d70478a9542a1c612d0b1f7 rdf:first sg:person.014176561231.95
56 rdf:rest N471361662fdf4f65bdeb1d65977c39fb
57 N8474b2bdb64642aa864393b7ce64be8b schema:name Springer Nature - SN SciGraph project
58 rdf:type schema:Organization
59 N862f52da68174b959ca2bde95f2025a3 schema:name doi
60 schema:value 10.1007/s00493-021-4336-9
61 rdf:type schema:PropertyValue
62 Nf7e97267d0c24b1793760959242fb2b1 schema:name dimensions_id
63 schema:value pub.1146254933
64 rdf:type schema:PropertyValue
65 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
66 schema:name Mathematical Sciences
67 rdf:type schema:DefinedTerm
68 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
69 schema:name Pure Mathematics
70 rdf:type schema:DefinedTerm
71 sg:journal.1136493 schema:issn 0209-9683
72 1439-6912
73 schema:name Combinatorica
74 schema:publisher Springer Nature
75 rdf:type schema:Periodical
76 sg:person.011473206405.64 schema:affiliation grid-institutes:grid.448092.3
77 schema:familyName Rocha
78 schema:givenName Israel
79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011473206405.64
80 rdf:type schema:Person
81 sg:person.014176561231.95 schema:affiliation grid-institutes:grid.7372.1
82 schema:familyName Grebík
83 schema:givenName Jan
84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014176561231.95
85 rdf:type schema:Person
86 sg:pub.10.1007/978-1-4612-4190-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040723300
87 https://doi.org/10.1007/978-1-4612-4190-4
88 rdf:type schema:CreativeWork
89 sg:pub.10.1007/978-3-319-16898-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002426422
90 https://doi.org/10.1007/978-3-319-16898-2
91 rdf:type schema:CreativeWork
92 sg:pub.10.1007/978-3-319-49847-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083763972
93 https://doi.org/10.1007/978-3-319-49847-8
94 rdf:type schema:CreativeWork
95 sg:pub.10.1007/bf02240204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044098084
96 https://doi.org/10.1007/bf02240204
97 rdf:type schema:CreativeWork
98 sg:pub.10.1007/bf02280291 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037031461
99 https://doi.org/10.1007/bf02280291
100 rdf:type schema:CreativeWork
101 grid-institutes:grid.448092.3 schema:alternateName Institute of Computer Science of the Czech Academy of Sciences, Pod Vodárenskou věží 2, 182 07, Prague, Czechia
102 schema:name Institute of Computer Science of the Czech Academy of Sciences, Pod Vodárenskou věží 2, 182 07, Prague, Czechia
103 rdf:type schema:Organization
104 grid-institutes:grid.7372.1 schema:alternateName Mathematics Institute, University of Warwick, CV4 7AL, Coventry, UK
105 schema:name Mathematics Institute, University of Warwick, CV4 7AL, Coventry, UK
106 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...