The Characteristic Polynomial of a Random Matrix View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2022-03-14

AUTHORS

Sean Eberhard

ABSTRACT

Form an n × n matrix by drawing entries independently from {±1} (or another fixed nontrivial finitely supported distribution in Z) and let φ be the characteristic polynomial. We show, conditionally on the extended Riemann hypothesis, that with high probability φ is irreducible and Gal(φ) ≥ An.

PAGES

491-527

References to SciGraph publications

  • 2017-03-24. Random matrices have simple spectrum in COMBINATORICA
  • 2018-06-23. Low-Degree Factors of Random Polynomials in JOURNAL OF THEORETICAL PROBABILITY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00493-020-4657-0

    DOI

    http://dx.doi.org/10.1007/s00493-020-4657-0

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1146254930


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Centre for Mathematical Sciences, Wilberforce Road, CB3 0WB, Cambridge, UK", 
              "id": "http://www.grid.ac/institutes/grid.5335.0", 
              "name": [
                "Centre for Mathematical Sciences, Wilberforce Road, CB3 0WB, Cambridge, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Eberhard", 
            "givenName": "Sean", 
            "id": "sg:person.015577533111.48", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015577533111.48"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s00493-016-3363-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084022332", 
              "https://doi.org/10.1007/s00493-016-3363-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10959-018-0839-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105086640", 
              "https://doi.org/10.1007/s10959-018-0839-8"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2022-03-14", 
        "datePublishedReg": "2022-03-14", 
        "description": "Form an n \u00d7 n matrix by drawing entries independently from {\u00b11} (or another fixed nontrivial finitely supported distribution in Z) and let \u03c6 be the characteristic polynomial. We show, conditionally on the extended Riemann hypothesis, that with high probability \u03c6 is irreducible and Gal(\u03c6) \u2265 An.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s00493-020-4657-0", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1136493", 
            "issn": [
              "0209-9683", 
              "1439-6912"
            ], 
            "name": "Combinatorica", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "42"
          }
        ], 
        "keywords": [
          "characteristic polynomial", 
          "random matrices", 
          "Riemann hypothesis", 
          "n matrix", 
          "Extended Riemann Hypothesis", 
          "polynomials", 
          "matrix", 
          "An", 
          "entry", 
          "hypothesis"
        ], 
        "name": "The Characteristic Polynomial of a Random Matrix", 
        "pagination": "491-527", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1146254930"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00493-020-4657-0"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00493-020-4657-0", 
          "https://app.dimensions.ai/details/publication/pub.1146254930"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-11-24T21:09", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_931.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s00493-020-4657-0"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00493-020-4657-0'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00493-020-4657-0'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00493-020-4657-0'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00493-020-4657-0'


     

    This table displays all metadata directly associated to this object as RDF triples.

    75 TRIPLES      21 PREDICATES      36 URIs      26 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00493-020-4657-0 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N9a498e7104f547c188fba0f3695a4d87
    4 schema:citation sg:pub.10.1007/s00493-016-3363-4
    5 sg:pub.10.1007/s10959-018-0839-8
    6 schema:datePublished 2022-03-14
    7 schema:datePublishedReg 2022-03-14
    8 schema:description Form an n × n matrix by drawing entries independently from {±1} (or another fixed nontrivial finitely supported distribution in Z) and let φ be the characteristic polynomial. We show, conditionally on the extended Riemann hypothesis, that with high probability φ is irreducible and Gal(φ) ≥ An.
    9 schema:genre article
    10 schema:isAccessibleForFree true
    11 schema:isPartOf N1314deb2b0494612a1d34fa00072e091
    12 Nc1aee1899bdc49f88dcb169a47cd34f9
    13 sg:journal.1136493
    14 schema:keywords An
    15 Extended Riemann Hypothesis
    16 Riemann hypothesis
    17 characteristic polynomial
    18 entry
    19 hypothesis
    20 matrix
    21 n matrix
    22 polynomials
    23 random matrices
    24 schema:name The Characteristic Polynomial of a Random Matrix
    25 schema:pagination 491-527
    26 schema:productId N5be80a2a5e9d41e9972ef4bcf4983fd5
    27 N87cef35b0b644edba6919c1bfc51a466
    28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1146254930
    29 https://doi.org/10.1007/s00493-020-4657-0
    30 schema:sdDatePublished 2022-11-24T21:09
    31 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    32 schema:sdPublisher Nbbc68658544141ab9e55da28fccc9631
    33 schema:url https://doi.org/10.1007/s00493-020-4657-0
    34 sgo:license sg:explorer/license/
    35 sgo:sdDataset articles
    36 rdf:type schema:ScholarlyArticle
    37 N1314deb2b0494612a1d34fa00072e091 schema:volumeNumber 42
    38 rdf:type schema:PublicationVolume
    39 N5be80a2a5e9d41e9972ef4bcf4983fd5 schema:name dimensions_id
    40 schema:value pub.1146254930
    41 rdf:type schema:PropertyValue
    42 N87cef35b0b644edba6919c1bfc51a466 schema:name doi
    43 schema:value 10.1007/s00493-020-4657-0
    44 rdf:type schema:PropertyValue
    45 N9a498e7104f547c188fba0f3695a4d87 rdf:first sg:person.015577533111.48
    46 rdf:rest rdf:nil
    47 Nbbc68658544141ab9e55da28fccc9631 schema:name Springer Nature - SN SciGraph project
    48 rdf:type schema:Organization
    49 Nc1aee1899bdc49f88dcb169a47cd34f9 schema:issueNumber 4
    50 rdf:type schema:PublicationIssue
    51 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    52 schema:name Mathematical Sciences
    53 rdf:type schema:DefinedTerm
    54 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    55 schema:name Pure Mathematics
    56 rdf:type schema:DefinedTerm
    57 sg:journal.1136493 schema:issn 0209-9683
    58 1439-6912
    59 schema:name Combinatorica
    60 schema:publisher Springer Nature
    61 rdf:type schema:Periodical
    62 sg:person.015577533111.48 schema:affiliation grid-institutes:grid.5335.0
    63 schema:familyName Eberhard
    64 schema:givenName Sean
    65 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015577533111.48
    66 rdf:type schema:Person
    67 sg:pub.10.1007/s00493-016-3363-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084022332
    68 https://doi.org/10.1007/s00493-016-3363-4
    69 rdf:type schema:CreativeWork
    70 sg:pub.10.1007/s10959-018-0839-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105086640
    71 https://doi.org/10.1007/s10959-018-0839-8
    72 rdf:type schema:CreativeWork
    73 grid-institutes:grid.5335.0 schema:alternateName Centre for Mathematical Sciences, Wilberforce Road, CB3 0WB, Cambridge, UK
    74 schema:name Centre for Mathematical Sciences, Wilberforce Road, CB3 0WB, Cambridge, UK
    75 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...