Random matrices have simple spectrum View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-03-24

AUTHORS

Terence Tao, Van Vu

ABSTRACT

Let Mn =(ξij)1≤i,j≤n be a real symmetric random matrix in which the upper-triangular entries ξij, i < j and diagonal entries ξii are independent. We show that with probability tending to 1, Mn has no repeated eigenvalues. As a corollary, we deduce that the Erdős-Rényi random graph has simple spectrum asymptotically almost surely, answering a question of Babai. More... »

PAGES

539-553

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00493-016-3363-4

DOI

http://dx.doi.org/10.1007/s00493-016-3363-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1084022332


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, UCLA, 90095-1555, Los Angeles, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.19006.3e", 
          "name": [
            "Department of Mathematics, UCLA, 90095-1555, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tao", 
        "givenName": "Terence", 
        "id": "sg:person.011344733521.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011344733521.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, Yale University, 06520, New Haven, USA", 
          "id": "http://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "Department of Mathematics, Yale University, 06520, New Haven, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vu", 
        "givenName": "Van", 
        "id": "sg:person.010415237375.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010415237375.45"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00220-012-1527-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045171409", 
          "https://doi.org/10.1007/s00220-012-1527-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-39286-3_16", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049521030", 
          "https://doi.org/10.1007/978-3-642-39286-3_16"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-03-24", 
    "datePublishedReg": "2017-03-24", 
    "description": "Let Mn =(\u03beij)1\u2264i,j\u2264n be a real symmetric random matrix in which the upper-triangular entries \u03beij, i < j and diagonal entries \u03beii are independent. We show that with probability tending to 1, Mn has no repeated eigenvalues. As a corollary, we deduce that the Erd\u0151s-R\u00e9nyi random graph has simple spectrum asymptotically almost surely, answering a question of Babai.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00493-016-3363-4", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136493", 
        "issn": [
          "0209-9683", 
          "1439-6912"
        ], 
        "name": "Combinatorica", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "37"
      }
    ], 
    "keywords": [
      "random matrices", 
      "real symmetric random matrices", 
      "Erd\u0151s\u2013R\u00e9nyi random graph", 
      "symmetric random matrices", 
      "question of Babai", 
      "random graphs", 
      "simple spectrum", 
      "\u03beij", 
      "eigenvalues", 
      "matrix", 
      "Babai", 
      "graph", 
      "corollary", 
      "probability", 
      "spectra", 
      "Mn", 
      "questions"
    ], 
    "name": "Random matrices have simple spectrum", 
    "pagination": "539-553", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1084022332"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00493-016-3363-4"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00493-016-3363-4", 
      "https://app.dimensions.ai/details/publication/pub.1084022332"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:36", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_747.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00493-016-3363-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00493-016-3363-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00493-016-3363-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00493-016-3363-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00493-016-3363-4'


 

This table displays all metadata directly associated to this object as RDF triples.

92 TRIPLES      21 PREDICATES      43 URIs      33 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00493-016-3363-4 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N1edb985d993340128a7a76c787448275
4 schema:citation sg:pub.10.1007/978-3-642-39286-3_16
5 sg:pub.10.1007/s00220-012-1527-7
6 schema:datePublished 2017-03-24
7 schema:datePublishedReg 2017-03-24
8 schema:description Let Mn =(ξij)1≤i,j≤n be a real symmetric random matrix in which the upper-triangular entries ξij, i < j and diagonal entries ξii are independent. We show that with probability tending to 1, Mn has no repeated eigenvalues. As a corollary, we deduce that the Erdős-Rényi random graph has simple spectrum asymptotically almost surely, answering a question of Babai.
9 schema:genre article
10 schema:isAccessibleForFree true
11 schema:isPartOf N0e6ba735bf6a4ae6827f7e9cfec26432
12 Ned481effce074351aa942f3be40a8ec5
13 sg:journal.1136493
14 schema:keywords Babai
15 Erdős–Rényi random graph
16 Mn
17 corollary
18 eigenvalues
19 graph
20 matrix
21 probability
22 question of Babai
23 questions
24 random graphs
25 random matrices
26 real symmetric random matrices
27 simple spectrum
28 spectra
29 symmetric random matrices
30 ξij
31 schema:name Random matrices have simple spectrum
32 schema:pagination 539-553
33 schema:productId N939b2125890f4a1eb9686feecb9c225d
34 N9d044fd4395042c986fb2616d92c5fda
35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084022332
36 https://doi.org/10.1007/s00493-016-3363-4
37 schema:sdDatePublished 2022-12-01T06:36
38 schema:sdLicense https://scigraph.springernature.com/explorer/license/
39 schema:sdPublisher Nbb050153e92e47df8b7428c4424289bd
40 schema:url https://doi.org/10.1007/s00493-016-3363-4
41 sgo:license sg:explorer/license/
42 sgo:sdDataset articles
43 rdf:type schema:ScholarlyArticle
44 N0e6ba735bf6a4ae6827f7e9cfec26432 schema:volumeNumber 37
45 rdf:type schema:PublicationVolume
46 N1edb985d993340128a7a76c787448275 rdf:first sg:person.011344733521.27
47 rdf:rest N23df9ffee9514fd99c8ca75afdc9848c
48 N23df9ffee9514fd99c8ca75afdc9848c rdf:first sg:person.010415237375.45
49 rdf:rest rdf:nil
50 N939b2125890f4a1eb9686feecb9c225d schema:name doi
51 schema:value 10.1007/s00493-016-3363-4
52 rdf:type schema:PropertyValue
53 N9d044fd4395042c986fb2616d92c5fda schema:name dimensions_id
54 schema:value pub.1084022332
55 rdf:type schema:PropertyValue
56 Nbb050153e92e47df8b7428c4424289bd schema:name Springer Nature - SN SciGraph project
57 rdf:type schema:Organization
58 Ned481effce074351aa942f3be40a8ec5 schema:issueNumber 3
59 rdf:type schema:PublicationIssue
60 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
61 schema:name Mathematical Sciences
62 rdf:type schema:DefinedTerm
63 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
64 schema:name Statistics
65 rdf:type schema:DefinedTerm
66 sg:journal.1136493 schema:issn 0209-9683
67 1439-6912
68 schema:name Combinatorica
69 schema:publisher Springer Nature
70 rdf:type schema:Periodical
71 sg:person.010415237375.45 schema:affiliation grid-institutes:grid.47100.32
72 schema:familyName Vu
73 schema:givenName Van
74 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010415237375.45
75 rdf:type schema:Person
76 sg:person.011344733521.27 schema:affiliation grid-institutes:grid.19006.3e
77 schema:familyName Tao
78 schema:givenName Terence
79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011344733521.27
80 rdf:type schema:Person
81 sg:pub.10.1007/978-3-642-39286-3_16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049521030
82 https://doi.org/10.1007/978-3-642-39286-3_16
83 rdf:type schema:CreativeWork
84 sg:pub.10.1007/s00220-012-1527-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045171409
85 https://doi.org/10.1007/s00220-012-1527-7
86 rdf:type schema:CreativeWork
87 grid-institutes:grid.19006.3e schema:alternateName Department of Mathematics, UCLA, 90095-1555, Los Angeles, CA, USA
88 schema:name Department of Mathematics, UCLA, 90095-1555, Los Angeles, CA, USA
89 rdf:type schema:Organization
90 grid-institutes:grid.47100.32 schema:alternateName Department of Mathematics, Yale University, 06520, New Haven, USA
91 schema:name Department of Mathematics, Yale University, 06520, New Haven, USA
92 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...