Superlinear Subset Partition Graphs With Dimension Reduction, Strong Adjacency, and Endpoint Count View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-02

AUTHORS

Tristram C. Bogart, Edward D. Kim

ABSTRACT

We construct a sequence of subset partition graphs satisfying the dimension reduction, adjacency, strong adjacency, and endpoint count properties whose diameter has a superlinear asymptotic lower bound. These abstractions of polytope graphs give further evidence against the Linear Hirsch Conjecture.

PAGES

75-114

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00493-016-3327-8

DOI

http://dx.doi.org/10.1007/s00493-016-3327-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1083800878


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Universidad de Los Andes", 
          "id": "https://www.grid.ac/institutes/grid.7247.6", 
          "name": [
            "Departamento de Matem\u00e1ticas, Universidad de los Andes, Carrera Primera # 18A-12, Bogot\u00e1, D.C., Colombia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bogart", 
        "givenName": "Tristram C.", 
        "id": "sg:person.011504445413.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011504445413.92"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Wisconsin\u2013La Crosse", 
          "id": "https://www.grid.ac/institutes/grid.267462.3", 
          "name": [
            "Department of Mathematics, University of Wisconsin-La Crosse, 1725 State Street, 54601, La Crosse, WI, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Edward D.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11750-013-0295-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004965384", 
          "https://doi.org/10.1007/s11750-013-0295-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0012-365x(79)90084-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014481777"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01584675", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017294062", 
          "https://doi.org/10.1007/bf01584675"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11750-013-0292-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019928503", 
          "https://doi.org/10.1007/s11750-013-0292-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1112/plms/s3-20.1.161", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023539185"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1112/plms/pdu064", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026330503"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02395040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028261156", 
          "https://doi.org/10.1007/bf02395040"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0273-0979-1992-00285-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029900833"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0040-9383(80)90003-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035799423"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01609004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039372675", 
          "https://doi.org/10.1007/bf01609004"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01609004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039372675", 
          "https://doi.org/10.1007/bf01609004"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0021-9800(69)80007-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040184553"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02293053", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040467300", 
          "https://doi.org/10.1007/bf02293053"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02293053", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040467300", 
          "https://doi.org/10.1007/bf02293053"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10107-012-0611-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051100720", 
          "https://doi.org/10.1007/s10107-012-0611-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0012-365x(74)90016-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053054108"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.1963.10500830", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058299773"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/moor.1.1.89", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064722633"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/moor.1100.0470", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064723160"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/moor.12.4.718", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064723318"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1365/s13291-010-0001-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065248660", 
          "https://doi.org/10.1365/s13291-010-0001-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4007/annals.2012.176.1.7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071867436"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7146/math.scand.a-15204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073614950"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1106830575", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9780470277331", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106830575"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-02", 
    "datePublishedReg": "2018-02-01", 
    "description": "We construct a sequence of subset partition graphs satisfying the dimension reduction, adjacency, strong adjacency, and endpoint count properties whose diameter has a superlinear asymptotic lower bound. These abstractions of polytope graphs give further evidence against the Linear Hirsch Conjecture.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00493-016-3327-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136493", 
        "issn": [
          "0209-9683", 
          "1439-6912"
        ], 
        "name": "Combinatorica", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "38"
      }
    ], 
    "name": "Superlinear Subset Partition Graphs With Dimension Reduction, Strong Adjacency, and Endpoint Count", 
    "pagination": "75-114", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "2d7cafdfaf2d305640ee40f20864c7a1b1914d8d5c65a5ebd84d5c54ad44a40b"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00493-016-3327-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1083800878"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00493-016-3327-8", 
      "https://app.dimensions.ai/details/publication/pub.1083800878"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:00", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000347_0000000347/records_89816_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00493-016-3327-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00493-016-3327-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00493-016-3327-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00493-016-3327-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00493-016-3327-8'


 

This table displays all metadata directly associated to this object as RDF triples.

146 TRIPLES      21 PREDICATES      50 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00493-016-3327-8 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N33cfbe7d2206483aa628b4463b0e8e8e
4 schema:citation sg:pub.10.1007/bf01584675
5 sg:pub.10.1007/bf01609004
6 sg:pub.10.1007/bf02293053
7 sg:pub.10.1007/bf02395040
8 sg:pub.10.1007/s10107-012-0611-2
9 sg:pub.10.1007/s11750-013-0292-x
10 sg:pub.10.1007/s11750-013-0295-7
11 sg:pub.10.1365/s13291-010-0001-8
12 https://app.dimensions.ai/details/publication/pub.1106830575
13 https://doi.org/10.1002/9780470277331
14 https://doi.org/10.1016/0012-365x(74)90016-8
15 https://doi.org/10.1016/0012-365x(79)90084-0
16 https://doi.org/10.1016/0040-9383(80)90003-8
17 https://doi.org/10.1016/s0021-9800(69)80007-4
18 https://doi.org/10.1080/01621459.1963.10500830
19 https://doi.org/10.1090/s0273-0979-1992-00285-9
20 https://doi.org/10.1112/plms/pdu064
21 https://doi.org/10.1112/plms/s3-20.1.161
22 https://doi.org/10.1287/moor.1.1.89
23 https://doi.org/10.1287/moor.1100.0470
24 https://doi.org/10.1287/moor.12.4.718
25 https://doi.org/10.4007/annals.2012.176.1.7
26 https://doi.org/10.7146/math.scand.a-15204
27 schema:datePublished 2018-02
28 schema:datePublishedReg 2018-02-01
29 schema:description We construct a sequence of subset partition graphs satisfying the dimension reduction, adjacency, strong adjacency, and endpoint count properties whose diameter has a superlinear asymptotic lower bound. These abstractions of polytope graphs give further evidence against the Linear Hirsch Conjecture.
30 schema:genre research_article
31 schema:inLanguage en
32 schema:isAccessibleForFree true
33 schema:isPartOf N38e4b5e46dbd4213b2a17726516d0ce4
34 N51c371a0a4c44089a4b5b5e11818258e
35 sg:journal.1136493
36 schema:name Superlinear Subset Partition Graphs With Dimension Reduction, Strong Adjacency, and Endpoint Count
37 schema:pagination 75-114
38 schema:productId N0c8fbf81a56442bfa7afcd1b50097d3f
39 Nca7bd65692a14ae49b03cfc3b9cbfa91
40 Nea7f0920c8ca40729ea1db7706fec5e7
41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083800878
42 https://doi.org/10.1007/s00493-016-3327-8
43 schema:sdDatePublished 2019-04-11T10:00
44 schema:sdLicense https://scigraph.springernature.com/explorer/license/
45 schema:sdPublisher Naa33a0b6b7fe4333a64d4dcf708cba0c
46 schema:url https://link.springer.com/10.1007%2Fs00493-016-3327-8
47 sgo:license sg:explorer/license/
48 sgo:sdDataset articles
49 rdf:type schema:ScholarlyArticle
50 N0c8fbf81a56442bfa7afcd1b50097d3f schema:name dimensions_id
51 schema:value pub.1083800878
52 rdf:type schema:PropertyValue
53 N33cfbe7d2206483aa628b4463b0e8e8e rdf:first sg:person.011504445413.92
54 rdf:rest N75ada601d446493e9e9fa4be817e4e07
55 N38e4b5e46dbd4213b2a17726516d0ce4 schema:issueNumber 1
56 rdf:type schema:PublicationIssue
57 N51c371a0a4c44089a4b5b5e11818258e schema:volumeNumber 38
58 rdf:type schema:PublicationVolume
59 N75ada601d446493e9e9fa4be817e4e07 rdf:first Nd3201f4cb45f44bbaeb9200733d6f83f
60 rdf:rest rdf:nil
61 Naa33a0b6b7fe4333a64d4dcf708cba0c schema:name Springer Nature - SN SciGraph project
62 rdf:type schema:Organization
63 Nca7bd65692a14ae49b03cfc3b9cbfa91 schema:name doi
64 schema:value 10.1007/s00493-016-3327-8
65 rdf:type schema:PropertyValue
66 Nd3201f4cb45f44bbaeb9200733d6f83f schema:affiliation https://www.grid.ac/institutes/grid.267462.3
67 schema:familyName Kim
68 schema:givenName Edward D.
69 rdf:type schema:Person
70 Nea7f0920c8ca40729ea1db7706fec5e7 schema:name readcube_id
71 schema:value 2d7cafdfaf2d305640ee40f20864c7a1b1914d8d5c65a5ebd84d5c54ad44a40b
72 rdf:type schema:PropertyValue
73 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
74 schema:name Mathematical Sciences
75 rdf:type schema:DefinedTerm
76 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
77 schema:name Pure Mathematics
78 rdf:type schema:DefinedTerm
79 sg:journal.1136493 schema:issn 0209-9683
80 1439-6912
81 schema:name Combinatorica
82 rdf:type schema:Periodical
83 sg:person.011504445413.92 schema:affiliation https://www.grid.ac/institutes/grid.7247.6
84 schema:familyName Bogart
85 schema:givenName Tristram C.
86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011504445413.92
87 rdf:type schema:Person
88 sg:pub.10.1007/bf01584675 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017294062
89 https://doi.org/10.1007/bf01584675
90 rdf:type schema:CreativeWork
91 sg:pub.10.1007/bf01609004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039372675
92 https://doi.org/10.1007/bf01609004
93 rdf:type schema:CreativeWork
94 sg:pub.10.1007/bf02293053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040467300
95 https://doi.org/10.1007/bf02293053
96 rdf:type schema:CreativeWork
97 sg:pub.10.1007/bf02395040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028261156
98 https://doi.org/10.1007/bf02395040
99 rdf:type schema:CreativeWork
100 sg:pub.10.1007/s10107-012-0611-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051100720
101 https://doi.org/10.1007/s10107-012-0611-2
102 rdf:type schema:CreativeWork
103 sg:pub.10.1007/s11750-013-0292-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1019928503
104 https://doi.org/10.1007/s11750-013-0292-x
105 rdf:type schema:CreativeWork
106 sg:pub.10.1007/s11750-013-0295-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004965384
107 https://doi.org/10.1007/s11750-013-0295-7
108 rdf:type schema:CreativeWork
109 sg:pub.10.1365/s13291-010-0001-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065248660
110 https://doi.org/10.1365/s13291-010-0001-8
111 rdf:type schema:CreativeWork
112 https://app.dimensions.ai/details/publication/pub.1106830575 schema:CreativeWork
113 https://doi.org/10.1002/9780470277331 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106830575
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1016/0012-365x(74)90016-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053054108
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/0012-365x(79)90084-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014481777
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/0040-9383(80)90003-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035799423
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/s0021-9800(69)80007-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040184553
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1080/01621459.1963.10500830 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058299773
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1090/s0273-0979-1992-00285-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029900833
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1112/plms/pdu064 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026330503
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1112/plms/s3-20.1.161 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023539185
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1287/moor.1.1.89 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064722633
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1287/moor.1100.0470 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064723160
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1287/moor.12.4.718 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064723318
136 rdf:type schema:CreativeWork
137 https://doi.org/10.4007/annals.2012.176.1.7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071867436
138 rdf:type schema:CreativeWork
139 https://doi.org/10.7146/math.scand.a-15204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073614950
140 rdf:type schema:CreativeWork
141 https://www.grid.ac/institutes/grid.267462.3 schema:alternateName University of Wisconsin–La Crosse
142 schema:name Department of Mathematics, University of Wisconsin-La Crosse, 1725 State Street, 54601, La Crosse, WI, USA
143 rdf:type schema:Organization
144 https://www.grid.ac/institutes/grid.7247.6 schema:alternateName Universidad de Los Andes
145 schema:name Departamento de Matemáticas, Universidad de los Andes, Carrera Primera # 18A-12, Bogotá, D.C., Colombia
146 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...