The characterization problem for designs with the parameters of AGd(n, q) View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2015-08-20

AUTHORS

Dieter Jungnickel, Klaus Metsch

ABSTRACT

We start a new characterization of the geometric 2-design AGd(n,q) among all simple 2-designs with the same parameters by handling the cases d ∈ {1,2,3,n — 2}. For d ≠ 1, our characterization is in terms of line sizes, and for d = 1 in terms of the number of affine hyperplanes. We also show that the number of non-isomorphic resolvable designs with the parameters of AG1(n,q) grows exponentially with linear growth of n. More... »

PAGES

513-535

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00493-014-3212-2

DOI

http://dx.doi.org/10.1007/s00493-014-3212-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1052020669


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Lehrstuhl f\u00fcr Diskrete Mathematik Optimierung und Operations Research, Universit\u00e4t Augsburg, 86135, Augsburg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.7307.3", 
          "name": [
            "Lehrstuhl f\u00fcr Diskrete Mathematik Optimierung und Operations Research, Universit\u00e4t Augsburg, 86135, Augsburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jungnickel", 
        "givenName": "Dieter", 
        "id": "sg:person.016273474670.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016273474670.91"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, Ghent University, Krijgslaan 281-S22, 9000, Ghent, Belgium", 
          "id": "http://www.grid.ac/institutes/grid.5342.0", 
          "name": [
            "Mathematisches Institut, Universit\u00e4t Gie\u00dfen, Arndtstrasse 2, 35392, Gie\u00dfen, Germany", 
            "Department of Mathematics, Ghent University, Krijgslaan 281-S22, 9000, Ghent, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Metsch", 
        "givenName": "Klaus", 
        "id": "sg:person.015723746007.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015723746007.47"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s10623-009-9299-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004041781", 
          "https://doi.org/10.1007/s10623-009-9299-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01589179", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002833158", 
          "https://doi.org/10.1007/bf01589179"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01236976", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025002160", 
          "https://doi.org/10.1007/bf01236976"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01899480", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027737103", 
          "https://doi.org/10.1007/bf01899480"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10623-010-9432-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034785352", 
          "https://doi.org/10.1007/s10623-010-9432-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01110747", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045364360", 
          "https://doi.org/10.1007/bf01110747"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-08-20", 
    "datePublishedReg": "2015-08-20", 
    "description": "We start a new characterization of the geometric 2-design AGd(n,q) among all simple 2-designs with the same parameters by handling the cases d \u2208 {1,2,3,n \u2014 2}. For d \u2260 1, our characterization is in terms of line sizes, and for d = 1 in terms of the number of affine hyperplanes. We also show that the number of non-isomorphic resolvable designs with the parameters of AG1(n,q) grows exponentially with linear growth of n.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00493-014-3212-2", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136493", 
        "issn": [
          "0209-9683", 
          "1439-6912"
        ], 
        "name": "Combinatorica", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "36"
      }
    ], 
    "keywords": [
      "parameters", 
      "design", 
      "characterization problem", 
      "characterization", 
      "same parameters", 
      "line size", 
      "linear growth", 
      "terms", 
      "size", 
      "case d", 
      "problem", 
      "number", 
      "growth", 
      "hyperplane", 
      "new characterization", 
      "affine hyperplanes", 
      "resolvable designs", 
      "non-isomorphic resolvable designs"
    ], 
    "name": "The characterization problem for designs with the parameters of AGd(n, q)", 
    "pagination": "513-535", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1052020669"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00493-014-3212-2"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00493-014-3212-2", 
      "https://app.dimensions.ai/details/publication/pub.1052020669"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:34", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_664.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00493-014-3212-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00493-014-3212-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00493-014-3212-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00493-014-3212-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00493-014-3212-2'


 

This table displays all metadata directly associated to this object as RDF triples.

111 TRIPLES      22 PREDICATES      49 URIs      35 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00493-014-3212-2 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N07efb960ebb647bf8c6c9bc431719364
4 schema:citation sg:pub.10.1007/bf01110747
5 sg:pub.10.1007/bf01236976
6 sg:pub.10.1007/bf01589179
7 sg:pub.10.1007/bf01899480
8 sg:pub.10.1007/s10623-009-9299-6
9 sg:pub.10.1007/s10623-010-9432-6
10 schema:datePublished 2015-08-20
11 schema:datePublishedReg 2015-08-20
12 schema:description We start a new characterization of the geometric 2-design AGd(n,q) among all simple 2-designs with the same parameters by handling the cases d ∈ {1,2,3,n — 2}. For d ≠ 1, our characterization is in terms of line sizes, and for d = 1 in terms of the number of affine hyperplanes. We also show that the number of non-isomorphic resolvable designs with the parameters of AG1(n,q) grows exponentially with linear growth of n.
13 schema:genre article
14 schema:inLanguage en
15 schema:isAccessibleForFree false
16 schema:isPartOf N11968914bb3849fab8dd68484a8815dd
17 N965baad8d6144a25bedb68d5e153aadf
18 sg:journal.1136493
19 schema:keywords affine hyperplanes
20 case d
21 characterization
22 characterization problem
23 design
24 growth
25 hyperplane
26 line size
27 linear growth
28 new characterization
29 non-isomorphic resolvable designs
30 number
31 parameters
32 problem
33 resolvable designs
34 same parameters
35 size
36 terms
37 schema:name The characterization problem for designs with the parameters of AGd(n, q)
38 schema:pagination 513-535
39 schema:productId Nd0111f3b90ac43cdb6927ae8c8e923ac
40 Nfa9b2ee3fba34f5bb8577e9caba43aa1
41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052020669
42 https://doi.org/10.1007/s00493-014-3212-2
43 schema:sdDatePublished 2021-12-01T19:34
44 schema:sdLicense https://scigraph.springernature.com/explorer/license/
45 schema:sdPublisher N2612034ef19b4dec9376dd1228ccad77
46 schema:url https://doi.org/10.1007/s00493-014-3212-2
47 sgo:license sg:explorer/license/
48 sgo:sdDataset articles
49 rdf:type schema:ScholarlyArticle
50 N07efb960ebb647bf8c6c9bc431719364 rdf:first sg:person.016273474670.91
51 rdf:rest Nddcff9544dd3493c82fb7f9f0f68805c
52 N11968914bb3849fab8dd68484a8815dd schema:issueNumber 5
53 rdf:type schema:PublicationIssue
54 N2612034ef19b4dec9376dd1228ccad77 schema:name Springer Nature - SN SciGraph project
55 rdf:type schema:Organization
56 N965baad8d6144a25bedb68d5e153aadf schema:volumeNumber 36
57 rdf:type schema:PublicationVolume
58 Nd0111f3b90ac43cdb6927ae8c8e923ac schema:name dimensions_id
59 schema:value pub.1052020669
60 rdf:type schema:PropertyValue
61 Nddcff9544dd3493c82fb7f9f0f68805c rdf:first sg:person.015723746007.47
62 rdf:rest rdf:nil
63 Nfa9b2ee3fba34f5bb8577e9caba43aa1 schema:name doi
64 schema:value 10.1007/s00493-014-3212-2
65 rdf:type schema:PropertyValue
66 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
67 schema:name Mathematical Sciences
68 rdf:type schema:DefinedTerm
69 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
70 schema:name Pure Mathematics
71 rdf:type schema:DefinedTerm
72 sg:journal.1136493 schema:issn 0209-9683
73 1439-6912
74 schema:name Combinatorica
75 schema:publisher Springer Nature
76 rdf:type schema:Periodical
77 sg:person.015723746007.47 schema:affiliation grid-institutes:grid.5342.0
78 schema:familyName Metsch
79 schema:givenName Klaus
80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015723746007.47
81 rdf:type schema:Person
82 sg:person.016273474670.91 schema:affiliation grid-institutes:grid.7307.3
83 schema:familyName Jungnickel
84 schema:givenName Dieter
85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016273474670.91
86 rdf:type schema:Person
87 sg:pub.10.1007/bf01110747 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045364360
88 https://doi.org/10.1007/bf01110747
89 rdf:type schema:CreativeWork
90 sg:pub.10.1007/bf01236976 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025002160
91 https://doi.org/10.1007/bf01236976
92 rdf:type schema:CreativeWork
93 sg:pub.10.1007/bf01589179 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002833158
94 https://doi.org/10.1007/bf01589179
95 rdf:type schema:CreativeWork
96 sg:pub.10.1007/bf01899480 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027737103
97 https://doi.org/10.1007/bf01899480
98 rdf:type schema:CreativeWork
99 sg:pub.10.1007/s10623-009-9299-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004041781
100 https://doi.org/10.1007/s10623-009-9299-6
101 rdf:type schema:CreativeWork
102 sg:pub.10.1007/s10623-010-9432-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034785352
103 https://doi.org/10.1007/s10623-010-9432-6
104 rdf:type schema:CreativeWork
105 grid-institutes:grid.5342.0 schema:alternateName Department of Mathematics, Ghent University, Krijgslaan 281-S22, 9000, Ghent, Belgium
106 schema:name Department of Mathematics, Ghent University, Krijgslaan 281-S22, 9000, Ghent, Belgium
107 Mathematisches Institut, Universität Gießen, Arndtstrasse 2, 35392, Gießen, Germany
108 rdf:type schema:Organization
109 grid-institutes:grid.7307.3 schema:alternateName Lehrstuhl für Diskrete Mathematik Optimierung und Operations Research, Universität Augsburg, 86135, Augsburg, Germany
110 schema:name Lehrstuhl für Diskrete Mathematik Optimierung und Operations Research, Universität Augsburg, 86135, Augsburg, Germany
111 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...