The characterization problem for designs with the parameters of AGd(n, q) View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-10

AUTHORS

Dieter Jungnickel, Klaus Metsch

ABSTRACT

We start a new characterization of the geometric 2-design AGd(n,q) among all simple 2-designs with the same parameters by handling the cases d ∈ {1,2,3,n — 2}. For d ≠ 1, our characterization is in terms of line sizes, and for d = 1 in terms of the number of affine hyperplanes. We also show that the number of non-isomorphic resolvable designs with the parameters of AG1(n,q) grows exponentially with linear growth of n. More... »

PAGES

513-535

References to SciGraph publications

Journal

TITLE

Combinatorica

ISSUE

5

VOLUME

36

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00493-014-3212-2

DOI

http://dx.doi.org/10.1007/s00493-014-3212-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1052020669


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Augsburg", 
          "id": "https://www.grid.ac/institutes/grid.7307.3", 
          "name": [
            "Lehrstuhl f\u00fcr Diskrete Mathematik Optimierung und Operations Research, Universit\u00e4t Augsburg, 86135, Augsburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jungnickel", 
        "givenName": "Dieter", 
        "id": "sg:person.016273474670.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016273474670.91"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ghent University", 
          "id": "https://www.grid.ac/institutes/grid.5342.0", 
          "name": [
            "Mathematisches Institut, Universit\u00e4t Gie\u00dfen, Arndtstrasse 2, 35392, Gie\u00dfen, Germany", 
            "Department of Mathematics, Ghent University, Krijgslaan 281-S22, 9000, Ghent, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Metsch", 
        "givenName": "Klaus", 
        "id": "sg:person.015723746007.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015723746007.47"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0097-3165(87)90050-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001864339"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01589179", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002833158", 
          "https://doi.org/10.1007/bf01589179"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10623-009-9299-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004041781", 
          "https://doi.org/10.1007/s10623-009-9299-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10623-009-9299-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004041781", 
          "https://doi.org/10.1007/s10623-009-9299-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0097-3165(75)90067-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009403442"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jcd.20276", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021269097"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01236976", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025002160", 
          "https://doi.org/10.1007/bf01236976"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01899480", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027737103", 
          "https://doi.org/10.1007/bf01899480"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01899480", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027737103", 
          "https://doi.org/10.1007/bf01899480"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0195-6698(80)80036-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029928858"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0097-3165(80)90072-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031969828"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10623-010-9432-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034785352", 
          "https://doi.org/10.1007/s10623-010-9432-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcta.2010.05.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044095765"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01110747", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045364360", 
          "https://doi.org/10.1007/bf01110747"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01110747", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045364360", 
          "https://doi.org/10.1007/bf01110747"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1147/rd.45.0460", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063182555"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1201/9781420049954", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109410940"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-10", 
    "datePublishedReg": "2016-10-01", 
    "description": "We start a new characterization of the geometric 2-design AGd(n,q) among all simple 2-designs with the same parameters by handling the cases d \u2208 {1,2,3,n \u2014 2}. For d \u2260 1, our characterization is in terms of line sizes, and for d = 1 in terms of the number of affine hyperplanes. We also show that the number of non-isomorphic resolvable designs with the parameters of AG1(n,q) grows exponentially with linear growth of n.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00493-014-3212-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136493", 
        "issn": [
          "0209-9683", 
          "1439-6912"
        ], 
        "name": "Combinatorica", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "36"
      }
    ], 
    "name": "The characterization problem for designs with the parameters of AGd(n, q)", 
    "pagination": "513-535", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "f7cb5ad4c7185c9a9678fe9387e7dbcbfded8914b483d42e63a64bbde73e3fe8"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00493-014-3212-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1052020669"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00493-014-3212-2", 
      "https://app.dimensions.ai/details/publication/pub.1052020669"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T17:43", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000596.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s00493-014-3212-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00493-014-3212-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00493-014-3212-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00493-014-3212-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00493-014-3212-2'


 

This table displays all metadata directly associated to this object as RDF triples.

120 TRIPLES      21 PREDICATES      41 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00493-014-3212-2 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Nea0c8e1e4f25450ba47289c2bcf58cdc
4 schema:citation sg:pub.10.1007/bf01110747
5 sg:pub.10.1007/bf01236976
6 sg:pub.10.1007/bf01589179
7 sg:pub.10.1007/bf01899480
8 sg:pub.10.1007/s10623-009-9299-6
9 sg:pub.10.1007/s10623-010-9432-6
10 https://doi.org/10.1002/jcd.20276
11 https://doi.org/10.1016/0097-3165(75)90067-9
12 https://doi.org/10.1016/0097-3165(80)90072-2
13 https://doi.org/10.1016/0097-3165(87)90050-1
14 https://doi.org/10.1016/j.jcta.2010.05.004
15 https://doi.org/10.1016/s0195-6698(80)80036-9
16 https://doi.org/10.1147/rd.45.0460
17 https://doi.org/10.1201/9781420049954
18 schema:datePublished 2016-10
19 schema:datePublishedReg 2016-10-01
20 schema:description We start a new characterization of the geometric 2-design AGd(n,q) among all simple 2-designs with the same parameters by handling the cases d ∈ {1,2,3,n — 2}. For d ≠ 1, our characterization is in terms of line sizes, and for d = 1 in terms of the number of affine hyperplanes. We also show that the number of non-isomorphic resolvable designs with the parameters of AG1(n,q) grows exponentially with linear growth of n.
21 schema:genre research_article
22 schema:inLanguage en
23 schema:isAccessibleForFree false
24 schema:isPartOf N4a2a55c0c0e74af6a2e8ba9122e03129
25 Na2a6235795aa45ffa5470c9f52ed4e48
26 sg:journal.1136493
27 schema:name The characterization problem for designs with the parameters of AGd(n, q)
28 schema:pagination 513-535
29 schema:productId N0d2b0f9bcf0944cca51b787705f120f1
30 N352f416448ef4a5f9cf10f0d2cfe6345
31 Nc20faf6bddf64fc38932b3c953256f33
32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052020669
33 https://doi.org/10.1007/s00493-014-3212-2
34 schema:sdDatePublished 2019-04-10T17:43
35 schema:sdLicense https://scigraph.springernature.com/explorer/license/
36 schema:sdPublisher N21430cd17dc849c49c82c884b667b7c4
37 schema:url http://link.springer.com/10.1007/s00493-014-3212-2
38 sgo:license sg:explorer/license/
39 sgo:sdDataset articles
40 rdf:type schema:ScholarlyArticle
41 N0d2b0f9bcf0944cca51b787705f120f1 schema:name readcube_id
42 schema:value f7cb5ad4c7185c9a9678fe9387e7dbcbfded8914b483d42e63a64bbde73e3fe8
43 rdf:type schema:PropertyValue
44 N21430cd17dc849c49c82c884b667b7c4 schema:name Springer Nature - SN SciGraph project
45 rdf:type schema:Organization
46 N352f416448ef4a5f9cf10f0d2cfe6345 schema:name doi
47 schema:value 10.1007/s00493-014-3212-2
48 rdf:type schema:PropertyValue
49 N4a2a55c0c0e74af6a2e8ba9122e03129 schema:volumeNumber 36
50 rdf:type schema:PublicationVolume
51 Na2a6235795aa45ffa5470c9f52ed4e48 schema:issueNumber 5
52 rdf:type schema:PublicationIssue
53 Nb83a6e97025a48e88129c11c411559a6 rdf:first sg:person.015723746007.47
54 rdf:rest rdf:nil
55 Nc20faf6bddf64fc38932b3c953256f33 schema:name dimensions_id
56 schema:value pub.1052020669
57 rdf:type schema:PropertyValue
58 Nea0c8e1e4f25450ba47289c2bcf58cdc rdf:first sg:person.016273474670.91
59 rdf:rest Nb83a6e97025a48e88129c11c411559a6
60 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
61 schema:name Mathematical Sciences
62 rdf:type schema:DefinedTerm
63 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
64 schema:name Pure Mathematics
65 rdf:type schema:DefinedTerm
66 sg:journal.1136493 schema:issn 0209-9683
67 1439-6912
68 schema:name Combinatorica
69 rdf:type schema:Periodical
70 sg:person.015723746007.47 schema:affiliation https://www.grid.ac/institutes/grid.5342.0
71 schema:familyName Metsch
72 schema:givenName Klaus
73 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015723746007.47
74 rdf:type schema:Person
75 sg:person.016273474670.91 schema:affiliation https://www.grid.ac/institutes/grid.7307.3
76 schema:familyName Jungnickel
77 schema:givenName Dieter
78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016273474670.91
79 rdf:type schema:Person
80 sg:pub.10.1007/bf01110747 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045364360
81 https://doi.org/10.1007/bf01110747
82 rdf:type schema:CreativeWork
83 sg:pub.10.1007/bf01236976 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025002160
84 https://doi.org/10.1007/bf01236976
85 rdf:type schema:CreativeWork
86 sg:pub.10.1007/bf01589179 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002833158
87 https://doi.org/10.1007/bf01589179
88 rdf:type schema:CreativeWork
89 sg:pub.10.1007/bf01899480 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027737103
90 https://doi.org/10.1007/bf01899480
91 rdf:type schema:CreativeWork
92 sg:pub.10.1007/s10623-009-9299-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004041781
93 https://doi.org/10.1007/s10623-009-9299-6
94 rdf:type schema:CreativeWork
95 sg:pub.10.1007/s10623-010-9432-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034785352
96 https://doi.org/10.1007/s10623-010-9432-6
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1002/jcd.20276 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021269097
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1016/0097-3165(75)90067-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009403442
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1016/0097-3165(80)90072-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031969828
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1016/0097-3165(87)90050-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001864339
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1016/j.jcta.2010.05.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044095765
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1016/s0195-6698(80)80036-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029928858
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1147/rd.45.0460 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063182555
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1201/9781420049954 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109410940
113 rdf:type schema:CreativeWork
114 https://www.grid.ac/institutes/grid.5342.0 schema:alternateName Ghent University
115 schema:name Department of Mathematics, Ghent University, Krijgslaan 281-S22, 9000, Ghent, Belgium
116 Mathematisches Institut, Universität Gießen, Arndtstrasse 2, 35392, Gießen, Germany
117 rdf:type schema:Organization
118 https://www.grid.ac/institutes/grid.7307.3 schema:alternateName University of Augsburg
119 schema:name Lehrstuhl für Diskrete Mathematik Optimierung und Operations Research, Universität Augsburg, 86135, Augsburg, Germany
120 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...