Global forecasting of thermal health hazards: the skill of probabilistic predictions of the Universal Thermal Climate Index (UTCI) View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-03

AUTHORS

F. Pappenberger, G. Jendritzky, H. Staiger, E. Dutra, F. Di Giuseppe, D. S. Richardson, H. L. Cloke

ABSTRACT

Although over a hundred thermal indices can be used for assessing thermal health hazards, many ignore the human heat budget, physiology and clothing. The Universal Thermal Climate Index (UTCI) addresses these shortcomings by using an advanced thermo-physiological model. This paper assesses the potential of using the UTCI for forecasting thermal health hazards. Traditionally, such hazard forecasting has had two further limitations: it has been narrowly focused on a particular region or nation and has relied on the use of single 'deterministic' forecasts. Here, the UTCI is computed on a global scale, which is essential for international health-hazard warnings and disaster preparedness, and it is provided as a probabilistic forecast. It is shown that probabilistic UTCI forecasts are superior in skill to deterministic forecasts and that despite global variations, the UTCI forecast is skilful for lead times up to 10 days. The paper also demonstrates the utility of probabilistic UTCI forecasts on the example of the 2010 heat wave in Russia. More... »

PAGES

311-323

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00484-014-0843-3

DOI

http://dx.doi.org/10.1007/s00484-014-0843-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1009130428

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/24859883


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0404", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Geophysics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Climate", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cold Temperature", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Forecasting", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Heat Stress Disorders", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hot Temperature", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Theoretical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Probability", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Russia", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Stress, Physiological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sunlight", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Wind", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "European Centre for Medium-Range Weather Forecasts", 
          "id": "https://www.grid.ac/institutes/grid.42781.38", 
          "name": [
            "Forecast Department, European Centre for Medium-Range Weather Forecasts, Reading, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pappenberger", 
        "givenName": "F.", 
        "id": "sg:person.013576170771.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013576170771.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Freiburg", 
          "id": "https://www.grid.ac/institutes/grid.5963.9", 
          "name": [
            "University of Freiburg, Freiburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jendritzky", 
        "givenName": "G.", 
        "id": "sg:person.0615313213.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0615313213.72"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Freiburg", 
          "id": "https://www.grid.ac/institutes/grid.5963.9", 
          "name": [
            "University of Freiburg, Freiburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Staiger", 
        "givenName": "H.", 
        "id": "sg:person.01042127113.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01042127113.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "European Centre for Medium-Range Weather Forecasts", 
          "id": "https://www.grid.ac/institutes/grid.42781.38", 
          "name": [
            "Forecast Department, European Centre for Medium-Range Weather Forecasts, Reading, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dutra", 
        "givenName": "E.", 
        "id": "sg:person.015501233421.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015501233421.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "European Centre for Medium-Range Weather Forecasts", 
          "id": "https://www.grid.ac/institutes/grid.42781.38", 
          "name": [
            "Forecast Department, European Centre for Medium-Range Weather Forecasts, Reading, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Di Giuseppe", 
        "givenName": "F.", 
        "id": "sg:person.013062503425.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013062503425.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "European Centre for Medium-Range Weather Forecasts", 
          "id": "https://www.grid.ac/institutes/grid.42781.38", 
          "name": [
            "Forecast Department, European Centre for Medium-Range Weather Forecasts, Reading, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Richardson", 
        "givenName": "D. S.", 
        "id": "sg:person.012536435324.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012536435324.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Reading", 
          "id": "https://www.grid.ac/institutes/grid.9435.b", 
          "name": [
            "University of Reading, Reading, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cloke", 
        "givenName": "H. L.", 
        "id": "sg:person.010201517621.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010201517621.46"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00484-011-0450-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001137057", 
          "https://doi.org/10.1007/s00484-011-0450-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00484-011-0454-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001365683", 
          "https://doi.org/10.1007/s00484-011-0454-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/hessd-8-1225-2011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004251038"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0378-7788(02)00005-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009598437"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s004840050118", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011053761", 
          "https://doi.org/10.1007/s004840050118"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/qj.1895", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013842469"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00484-011-0513-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016083141", 
          "https://doi.org/10.1007/s00484-011-0513-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/met.283", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018798659"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00484-011-0409-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018992844", 
          "https://doi.org/10.1007/s00484-011-0409-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hyp.6734", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020203780"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/hess-11-725-2007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021133010"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0450(1973)012<0595:anvpot>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023865831"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00484-011-0453-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025488751", 
          "https://doi.org/10.1007/s00484-011-0453-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/hess-13-141-2009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025699052"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00484-011-0451-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026382100", 
          "https://doi.org/10.1007/s00484-011-0451-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/2007mwr2410.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026547527"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s004840100099", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028717374", 
          "https://doi.org/10.1007/s004840100099"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hyp.7772", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028740736"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0434(2000)015<0559:dotcrp>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031058864"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/qj.828", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039601605"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijforecast.2005.11.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040477875"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/2007mwr2411.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041975884"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00484-011-0424-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042994583", 
          "https://doi.org/10.1007/s00484-011-0424-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/nhessd-1-5057-2013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043851872"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/qj.49712656313", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046383708"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/pl00013733", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049849175", 
          "https://doi.org/10.1007/pl00013733"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1127/0941-2948/2005/0030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062699494"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3402/tellusa.v65i0.19669", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071280847"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7163/gpol.2013.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073628420"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/jappl.2001.90.5.1943", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074798149"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-03", 
    "datePublishedReg": "2015-03-01", 
    "description": "Although over a hundred thermal indices can be used for assessing thermal health hazards, many ignore the human heat budget, physiology and clothing. The Universal Thermal Climate Index (UTCI) addresses these shortcomings by using an advanced thermo-physiological model. This paper assesses the potential of using the UTCI for forecasting thermal health hazards. Traditionally, such hazard forecasting has had two further limitations: it has been narrowly focused on a particular region or nation and has relied on the use of single 'deterministic' forecasts. Here, the UTCI is computed on a global scale, which is essential for international health-hazard warnings and disaster preparedness, and it is provided as a probabilistic forecast. It is shown that probabilistic UTCI forecasts are superior in skill to deterministic forecasts and that despite global variations, the UTCI forecast is skilful for lead times up to 10\u00a0days. The paper also demonstrates the utility of probabilistic UTCI forecasts on the example of the 2010 heat wave in Russia. ", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00484-014-0843-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2764812", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2752510", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1017657", 
        "issn": [
          "0020-7128", 
          "1432-1254"
        ], 
        "name": "International Journal of Biometeorology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "59"
      }
    ], 
    "name": "Global forecasting of thermal health hazards: the skill of probabilistic predictions of the Universal Thermal Climate Index (UTCI)", 
    "pagination": "311-323", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "2b7fb7d7e4d6c0659fb66830e8fc2e8bf77065bcbe252f01b739e88c796af1cd"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "24859883"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0374716"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00484-014-0843-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1009130428"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00484-014-0843-3", 
      "https://app.dimensions.ai/details/publication/pub.1009130428"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:09", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000367_0000000367/records_88239_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00484-014-0843-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00484-014-0843-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00484-014-0843-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00484-014-0843-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00484-014-0843-3'


 

This table displays all metadata directly associated to this object as RDF triples.

273 TRIPLES      21 PREDICATES      72 URIs      34 LITERALS      22 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00484-014-0843-3 schema:about N136bbd1d8f6244b5b487efa38fc4bdb7
2 N2872156cd0c44e52897981b3e5389c66
3 N480b587ab0c54c90bb031bedca930920
4 N5cb7050ade4c493e9d5d644d7478a76e
5 N5e73808c092a4b75b5c929a2e49c35b3
6 N8fda3985e5084787847a869b7f327326
7 N9fdc668aadd74129a785b27b8b2c9dea
8 Naab077001574498680b9fa2dd510a6d7
9 Nb2c5b2fa904144e98224091efa4cc364
10 Nbf1be0452ab345c9aae39ac78a974536
11 Nc0c4f7853312481892b58dde545bf45a
12 Nd4485f783fa049da87555cda66284a9d
13 Nebe0654cc1e940a6ad128909c8f77676
14 anzsrc-for:04
15 anzsrc-for:0404
16 schema:author Ndcb68416b42e4499be476e0928175daf
17 schema:citation sg:pub.10.1007/pl00013733
18 sg:pub.10.1007/s00484-011-0409-6
19 sg:pub.10.1007/s00484-011-0424-7
20 sg:pub.10.1007/s00484-011-0450-5
21 sg:pub.10.1007/s00484-011-0451-4
22 sg:pub.10.1007/s00484-011-0453-2
23 sg:pub.10.1007/s00484-011-0454-1
24 sg:pub.10.1007/s00484-011-0513-7
25 sg:pub.10.1007/s004840050118
26 sg:pub.10.1007/s004840100099
27 https://doi.org/10.1002/hyp.6734
28 https://doi.org/10.1002/hyp.7772
29 https://doi.org/10.1002/met.283
30 https://doi.org/10.1002/qj.1895
31 https://doi.org/10.1002/qj.49712656313
32 https://doi.org/10.1002/qj.828
33 https://doi.org/10.1016/j.ijforecast.2005.11.002
34 https://doi.org/10.1016/s0378-7788(02)00005-1
35 https://doi.org/10.1127/0941-2948/2005/0030
36 https://doi.org/10.1152/jappl.2001.90.5.1943
37 https://doi.org/10.1175/1520-0434(2000)015<0559:dotcrp>2.0.co;2
38 https://doi.org/10.1175/1520-0450(1973)012<0595:anvpot>2.0.co;2
39 https://doi.org/10.1175/2007mwr2410.1
40 https://doi.org/10.1175/2007mwr2411.1
41 https://doi.org/10.3402/tellusa.v65i0.19669
42 https://doi.org/10.5194/hess-11-725-2007
43 https://doi.org/10.5194/hess-13-141-2009
44 https://doi.org/10.5194/hessd-8-1225-2011
45 https://doi.org/10.5194/nhessd-1-5057-2013
46 https://doi.org/10.7163/gpol.2013.1
47 schema:datePublished 2015-03
48 schema:datePublishedReg 2015-03-01
49 schema:description Although over a hundred thermal indices can be used for assessing thermal health hazards, many ignore the human heat budget, physiology and clothing. The Universal Thermal Climate Index (UTCI) addresses these shortcomings by using an advanced thermo-physiological model. This paper assesses the potential of using the UTCI for forecasting thermal health hazards. Traditionally, such hazard forecasting has had two further limitations: it has been narrowly focused on a particular region or nation and has relied on the use of single 'deterministic' forecasts. Here, the UTCI is computed on a global scale, which is essential for international health-hazard warnings and disaster preparedness, and it is provided as a probabilistic forecast. It is shown that probabilistic UTCI forecasts are superior in skill to deterministic forecasts and that despite global variations, the UTCI forecast is skilful for lead times up to 10 days. The paper also demonstrates the utility of probabilistic UTCI forecasts on the example of the 2010 heat wave in Russia.
50 schema:genre research_article
51 schema:inLanguage en
52 schema:isAccessibleForFree true
53 schema:isPartOf N6fc90f3a31e8427db97d46abdecf2840
54 Na180ad1e37b144febb71e61e43f866fd
55 sg:journal.1017657
56 schema:name Global forecasting of thermal health hazards: the skill of probabilistic predictions of the Universal Thermal Climate Index (UTCI)
57 schema:pagination 311-323
58 schema:productId N526b81213b324959baf585c5f0c09b43
59 N6ce22f91fed14939bca8a1b100e9004e
60 Nc82a662776e142679faa2fef8e2307d4
61 Nc9017a9ad0f149ffb5aa00e0c0e1462d
62 Nec4e097d1dc34f51870e43a4f720a87c
63 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009130428
64 https://doi.org/10.1007/s00484-014-0843-3
65 schema:sdDatePublished 2019-04-11T13:09
66 schema:sdLicense https://scigraph.springernature.com/explorer/license/
67 schema:sdPublisher N48f0d16914854db0a3c95343d05bfd8d
68 schema:url http://link.springer.com/10.1007%2Fs00484-014-0843-3
69 sgo:license sg:explorer/license/
70 sgo:sdDataset articles
71 rdf:type schema:ScholarlyArticle
72 N136bbd1d8f6244b5b487efa38fc4bdb7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
73 schema:name Russia
74 rdf:type schema:DefinedTerm
75 N2872156cd0c44e52897981b3e5389c66 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
76 schema:name Hot Temperature
77 rdf:type schema:DefinedTerm
78 N480b587ab0c54c90bb031bedca930920 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
79 schema:name Models, Theoretical
80 rdf:type schema:DefinedTerm
81 N48f0d16914854db0a3c95343d05bfd8d schema:name Springer Nature - SN SciGraph project
82 rdf:type schema:Organization
83 N526b81213b324959baf585c5f0c09b43 schema:name pubmed_id
84 schema:value 24859883
85 rdf:type schema:PropertyValue
86 N5cb7050ade4c493e9d5d644d7478a76e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
87 schema:name Forecasting
88 rdf:type schema:DefinedTerm
89 N5e73808c092a4b75b5c929a2e49c35b3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
90 schema:name Reproducibility of Results
91 rdf:type schema:DefinedTerm
92 N6ce22f91fed14939bca8a1b100e9004e schema:name readcube_id
93 schema:value 2b7fb7d7e4d6c0659fb66830e8fc2e8bf77065bcbe252f01b739e88c796af1cd
94 rdf:type schema:PropertyValue
95 N6fc90f3a31e8427db97d46abdecf2840 schema:volumeNumber 59
96 rdf:type schema:PublicationVolume
97 N8fda3985e5084787847a869b7f327326 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name Humans
99 rdf:type schema:DefinedTerm
100 N948bf66ba11e49ff8a3430e6a8ffe229 rdf:first sg:person.0615313213.72
101 rdf:rest N9e6a3608274049daa3a1dedb357c6f0d
102 N9e6a3608274049daa3a1dedb357c6f0d rdf:first sg:person.01042127113.51
103 rdf:rest Nda784b75a7ef45d7aa306b3c18b6d936
104 N9fdc668aadd74129a785b27b8b2c9dea schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Cold Temperature
106 rdf:type schema:DefinedTerm
107 Na0052571a6854668b363e47c3c928507 rdf:first sg:person.010201517621.46
108 rdf:rest rdf:nil
109 Na180ad1e37b144febb71e61e43f866fd schema:issueNumber 3
110 rdf:type schema:PublicationIssue
111 Naab077001574498680b9fa2dd510a6d7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Heat Stress Disorders
113 rdf:type schema:DefinedTerm
114 Naf1ca84b1e4d403dabc226f41d2f5cba rdf:first sg:person.012536435324.01
115 rdf:rest Na0052571a6854668b363e47c3c928507
116 Nb2c5b2fa904144e98224091efa4cc364 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Probability
118 rdf:type schema:DefinedTerm
119 Nbf1be0452ab345c9aae39ac78a974536 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
120 schema:name Stress, Physiological
121 rdf:type schema:DefinedTerm
122 Nc0c4f7853312481892b58dde545bf45a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
123 schema:name Sunlight
124 rdf:type schema:DefinedTerm
125 Nc82a662776e142679faa2fef8e2307d4 schema:name dimensions_id
126 schema:value pub.1009130428
127 rdf:type schema:PropertyValue
128 Nc9017a9ad0f149ffb5aa00e0c0e1462d schema:name doi
129 schema:value 10.1007/s00484-014-0843-3
130 rdf:type schema:PropertyValue
131 Nd4485f783fa049da87555cda66284a9d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Wind
133 rdf:type schema:DefinedTerm
134 Nda784b75a7ef45d7aa306b3c18b6d936 rdf:first sg:person.015501233421.17
135 rdf:rest Ne5037d333f9043e3b0941cfa427874cc
136 Ndcb68416b42e4499be476e0928175daf rdf:first sg:person.013576170771.53
137 rdf:rest N948bf66ba11e49ff8a3430e6a8ffe229
138 Ne5037d333f9043e3b0941cfa427874cc rdf:first sg:person.013062503425.37
139 rdf:rest Naf1ca84b1e4d403dabc226f41d2f5cba
140 Nebe0654cc1e940a6ad128909c8f77676 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
141 schema:name Climate
142 rdf:type schema:DefinedTerm
143 Nec4e097d1dc34f51870e43a4f720a87c schema:name nlm_unique_id
144 schema:value 0374716
145 rdf:type schema:PropertyValue
146 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
147 schema:name Earth Sciences
148 rdf:type schema:DefinedTerm
149 anzsrc-for:0404 schema:inDefinedTermSet anzsrc-for:
150 schema:name Geophysics
151 rdf:type schema:DefinedTerm
152 sg:grant.2752510 http://pending.schema.org/fundedItem sg:pub.10.1007/s00484-014-0843-3
153 rdf:type schema:MonetaryGrant
154 sg:grant.2764812 http://pending.schema.org/fundedItem sg:pub.10.1007/s00484-014-0843-3
155 rdf:type schema:MonetaryGrant
156 sg:journal.1017657 schema:issn 0020-7128
157 1432-1254
158 schema:name International Journal of Biometeorology
159 rdf:type schema:Periodical
160 sg:person.010201517621.46 schema:affiliation https://www.grid.ac/institutes/grid.9435.b
161 schema:familyName Cloke
162 schema:givenName H. L.
163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010201517621.46
164 rdf:type schema:Person
165 sg:person.01042127113.51 schema:affiliation https://www.grid.ac/institutes/grid.5963.9
166 schema:familyName Staiger
167 schema:givenName H.
168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01042127113.51
169 rdf:type schema:Person
170 sg:person.012536435324.01 schema:affiliation https://www.grid.ac/institutes/grid.42781.38
171 schema:familyName Richardson
172 schema:givenName D. S.
173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012536435324.01
174 rdf:type schema:Person
175 sg:person.013062503425.37 schema:affiliation https://www.grid.ac/institutes/grid.42781.38
176 schema:familyName Di Giuseppe
177 schema:givenName F.
178 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013062503425.37
179 rdf:type schema:Person
180 sg:person.013576170771.53 schema:affiliation https://www.grid.ac/institutes/grid.42781.38
181 schema:familyName Pappenberger
182 schema:givenName F.
183 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013576170771.53
184 rdf:type schema:Person
185 sg:person.015501233421.17 schema:affiliation https://www.grid.ac/institutes/grid.42781.38
186 schema:familyName Dutra
187 schema:givenName E.
188 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015501233421.17
189 rdf:type schema:Person
190 sg:person.0615313213.72 schema:affiliation https://www.grid.ac/institutes/grid.5963.9
191 schema:familyName Jendritzky
192 schema:givenName G.
193 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0615313213.72
194 rdf:type schema:Person
195 sg:pub.10.1007/pl00013733 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049849175
196 https://doi.org/10.1007/pl00013733
197 rdf:type schema:CreativeWork
198 sg:pub.10.1007/s00484-011-0409-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018992844
199 https://doi.org/10.1007/s00484-011-0409-6
200 rdf:type schema:CreativeWork
201 sg:pub.10.1007/s00484-011-0424-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042994583
202 https://doi.org/10.1007/s00484-011-0424-7
203 rdf:type schema:CreativeWork
204 sg:pub.10.1007/s00484-011-0450-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001137057
205 https://doi.org/10.1007/s00484-011-0450-5
206 rdf:type schema:CreativeWork
207 sg:pub.10.1007/s00484-011-0451-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026382100
208 https://doi.org/10.1007/s00484-011-0451-4
209 rdf:type schema:CreativeWork
210 sg:pub.10.1007/s00484-011-0453-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025488751
211 https://doi.org/10.1007/s00484-011-0453-2
212 rdf:type schema:CreativeWork
213 sg:pub.10.1007/s00484-011-0454-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001365683
214 https://doi.org/10.1007/s00484-011-0454-1
215 rdf:type schema:CreativeWork
216 sg:pub.10.1007/s00484-011-0513-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016083141
217 https://doi.org/10.1007/s00484-011-0513-7
218 rdf:type schema:CreativeWork
219 sg:pub.10.1007/s004840050118 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011053761
220 https://doi.org/10.1007/s004840050118
221 rdf:type schema:CreativeWork
222 sg:pub.10.1007/s004840100099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028717374
223 https://doi.org/10.1007/s004840100099
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1002/hyp.6734 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020203780
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1002/hyp.7772 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028740736
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1002/met.283 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018798659
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1002/qj.1895 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013842469
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1002/qj.49712656313 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046383708
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1002/qj.828 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039601605
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1016/j.ijforecast.2005.11.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040477875
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1016/s0378-7788(02)00005-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009598437
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1127/0941-2948/2005/0030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062699494
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1152/jappl.2001.90.5.1943 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074798149
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1175/1520-0434(2000)015<0559:dotcrp>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031058864
246 rdf:type schema:CreativeWork
247 https://doi.org/10.1175/1520-0450(1973)012<0595:anvpot>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023865831
248 rdf:type schema:CreativeWork
249 https://doi.org/10.1175/2007mwr2410.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026547527
250 rdf:type schema:CreativeWork
251 https://doi.org/10.1175/2007mwr2411.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041975884
252 rdf:type schema:CreativeWork
253 https://doi.org/10.3402/tellusa.v65i0.19669 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071280847
254 rdf:type schema:CreativeWork
255 https://doi.org/10.5194/hess-11-725-2007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021133010
256 rdf:type schema:CreativeWork
257 https://doi.org/10.5194/hess-13-141-2009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025699052
258 rdf:type schema:CreativeWork
259 https://doi.org/10.5194/hessd-8-1225-2011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004251038
260 rdf:type schema:CreativeWork
261 https://doi.org/10.5194/nhessd-1-5057-2013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043851872
262 rdf:type schema:CreativeWork
263 https://doi.org/10.7163/gpol.2013.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073628420
264 rdf:type schema:CreativeWork
265 https://www.grid.ac/institutes/grid.42781.38 schema:alternateName European Centre for Medium-Range Weather Forecasts
266 schema:name Forecast Department, European Centre for Medium-Range Weather Forecasts, Reading, UK
267 rdf:type schema:Organization
268 https://www.grid.ac/institutes/grid.5963.9 schema:alternateName University of Freiburg
269 schema:name University of Freiburg, Freiburg, Germany
270 rdf:type schema:Organization
271 https://www.grid.ac/institutes/grid.9435.b schema:alternateName University of Reading
272 schema:name University of Reading, Reading, UK
273 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...