The influence of climate on durum wheat quality in Tuscany, Central Italy View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2011-01

AUTHORS

Anna Dalla Marta, D. Grifoni, M. Mancini, G. Zipoli, S. Orlandini

ABSTRACT

Climate and meteorological conditions greatly affect agricultural activities, modifying plant responses and determining the quantity and the quality of production. In this respect, the aim of this research was to analyze the quality of winter durum wheat (Triticum turgidum L. var. durum), in terms of protein content through the use of meteorological information. Meteorological conditions were described utilizing both local weather station data (air temperature, cumulated precipitation) and large-scale information available freely on the internet, such as geopotential height (GPH), sea surface temperature (SST), and the North Atlantic Oscillation (NAO) index. The analysis was carried out for the period 1997-2009 in the Tuscany region, Central Italy. Grain protein was positively correlated with air temperature during the February to June period, and negatively with cumulative precipitation during the entire period from November to June. Protein content was also negatively correlated with 500 hPa GPH over Gibraltar and North-Western Africa during the March to June period and with the SST of the Atlantic Ocean south-west of the Canary Islands during the January to June period. Finally, with regard to the NAO, winter durum wheat quality was positively correlated with the specific index for several months, in particular during the winter period. These results demonstrate that precipitation and air temperature over the production area represent two crucial variables driving the vegeto-productive responses of winter durum wheat. On the other hand, the use of large-scale meteorological information showed great potential from the perspective of a local quality forecast system setup. More... »

PAGES

87-96

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00484-010-0310-8

DOI

http://dx.doi.org/10.1007/s00484-010-0310-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1043805986

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/20358232


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0401", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atmospheric Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Climate", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Italy", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Plant Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Rain", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Temperature", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Time Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Triticum", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Florence", 
          "id": "https://www.grid.ac/institutes/grid.8404.8", 
          "name": [
            "Department of Plant, Soil and Environmental Science, University of Florence, Piazzale delle Cascine 18, 50144, Florence, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dalla Marta", 
        "givenName": "Anna", 
        "id": "sg:person.012757716762.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012757716762.71"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "CNR-Institute of Biometeorology, Via Caproni, 8, 50145, Florence, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Grifoni", 
        "givenName": "D.", 
        "id": "sg:person.01346514315.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01346514315.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Florence", 
          "id": "https://www.grid.ac/institutes/grid.8404.8", 
          "name": [
            "Department of Plant, Soil and Environmental Science, University of Florence, Piazzale delle Cascine 18, 50144, Florence, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mancini", 
        "givenName": "M.", 
        "id": "sg:person.015711742246.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015711742246.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "CNR-Institute of Biometeorology, Via Caproni, 8, 50145, Florence, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zipoli", 
        "givenName": "G.", 
        "id": "sg:person.0713637641.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0713637641.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Florence", 
          "id": "https://www.grid.ac/institutes/grid.8404.8", 
          "name": [
            "Department of Plant, Soil and Environmental Science, University of Florence, Piazzale delle Cascine 18, 50144, Florence, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Orlandini", 
        "givenName": "S.", 
        "id": "sg:person.01335773615.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01335773615.34"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.jcs.2008.09.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004848866"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0168-1923(99)00020-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006502746"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1014217317898", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006785947", 
          "https://doi.org/10.1023/a:1014217317898"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0021859600068040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010117512"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0021859600068040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010117512"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0021859600068040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010117512"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0477(1996)077<0437:tnyrp>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011849757"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/hess-13-17-2009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012252889"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10408398909527496", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013232128"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1071/pp9940869", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013722415"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0002-1571(68)90034-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014715995"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0002-1571(68)90034-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014715995"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/jxb/47.5.623", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016321658"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0442(1997)010<2548:eseils>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018114608"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2008jd010382", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019666362"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jsfa.2740370502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023052902"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4141/cjps77-105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025558922"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jcrs.1996.0042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026274840"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jsfa.2740260504", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027075592"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.agrformet.2005.02.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032158984"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1256/wea.38.02", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032704551"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1071/ea9710546", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034124367"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1005314315270", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035234324", 
          "https://doi.org/10.1023/a:1005314315270"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1071/pp9770785", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035760695"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcs.2008.01.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045273167"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jsfa.2855", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048811072"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jsfa.2855", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048811072"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1161-0301(99)00036-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049864440"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1097-0088(19971115)17:13<1433::aid-joc203>3.0.co;2-p", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050153693"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1097-0088(19971115)17:13<1433::aid-joc203>3.0.co;2-p", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050153693"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1626/pps.9.323", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051676485"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0021859608007958", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052551555"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0021859608007958", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052551555"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2621.2006.01313.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052638602"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1097-0088(199710)17:12<1285::aid-joc198>3.0.co;2-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053288618"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jcrs.1999.0258", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054489087"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jcrs.2000.0313", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054489091"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.269.5224.676", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062550625"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2134/agronj1989.00021962008100060022x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068992412"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3354/cr021165", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071159482"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-01", 
    "datePublishedReg": "2011-01-01", 
    "description": "Climate and meteorological conditions greatly affect agricultural activities, modifying plant responses and determining the quantity and the quality of production. In this respect, the aim of this research was to analyze the quality of winter durum wheat (Triticum turgidum L. var. durum), in terms of protein content through the use of meteorological information. Meteorological conditions were described utilizing both local weather station data (air temperature, cumulated precipitation) and large-scale information available freely on the internet, such as geopotential height (GPH), sea surface temperature (SST), and the North Atlantic Oscillation (NAO) index. The analysis was carried out for the period 1997-2009 in the Tuscany region, Central Italy. Grain protein was positively correlated with air temperature during the February to June period, and negatively with cumulative precipitation during the entire period from November to June. Protein content was also negatively correlated with 500\u00a0hPa GPH over Gibraltar and North-Western Africa during the March to June period and with the SST of the Atlantic Ocean south-west of the Canary Islands during the January to June period. Finally, with regard to the NAO, winter durum wheat quality was positively correlated with the specific index for several months, in particular during the winter period. These results demonstrate that precipitation and air temperature over the production area represent two crucial variables driving the vegeto-productive responses of winter durum wheat. On the other hand, the use of large-scale meteorological information showed great potential from the perspective of a local quality forecast system setup.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00484-010-0310-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1017657", 
        "issn": [
          "0020-7128", 
          "1432-1254"
        ], 
        "name": "International Journal of Biometeorology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "55"
      }
    ], 
    "name": "The influence of climate on durum wheat quality in Tuscany, Central Italy", 
    "pagination": "87-96", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d0aa2879221fcfcd54ff9b5619ebb98f276408b1d09115d1ee3346196883e36a"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "20358232"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0374716"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00484-010-0310-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1043805986"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00484-010-0310-8", 
      "https://app.dimensions.ai/details/publication/pub.1043805986"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:21", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000348_0000000348/records_54338_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00484-010-0310-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00484-010-0310-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00484-010-0310-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00484-010-0310-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00484-010-0310-8'


 

This table displays all metadata directly associated to this object as RDF triples.

233 TRIPLES      21 PREDICATES      70 URIs      28 LITERALS      16 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00484-010-0310-8 schema:about N40cdf83348f54764ba9a7d7342fc2d2f
2 N7ae6d9a80160436cbe7d16690fe21065
3 N8f1f8737a23d4cbc9ef813d1936e906e
4 N99a9b99b4e314c1196ef0a12c71e9c2f
5 Nab74842cdd574bfeb725a77c248b07f5
6 Nd2e7e38014134c789421f40773a4351e
7 Neae300dd5a3b4a259b8a18f3453c748a
8 anzsrc-for:04
9 anzsrc-for:0401
10 schema:author N25c86cc0d672443f9711fef8a2882e43
11 schema:citation sg:pub.10.1023/a:1005314315270
12 sg:pub.10.1023/a:1014217317898
13 https://doi.org/10.1002/(sici)1097-0088(199710)17:12<1285::aid-joc198>3.0.co;2-9
14 https://doi.org/10.1002/(sici)1097-0088(19971115)17:13<1433::aid-joc203>3.0.co;2-p
15 https://doi.org/10.1002/jsfa.2740260504
16 https://doi.org/10.1002/jsfa.2740370502
17 https://doi.org/10.1002/jsfa.2855
18 https://doi.org/10.1006/jcrs.1996.0042
19 https://doi.org/10.1006/jcrs.1999.0258
20 https://doi.org/10.1006/jcrs.2000.0313
21 https://doi.org/10.1016/0002-1571(68)90034-4
22 https://doi.org/10.1016/j.agrformet.2005.02.002
23 https://doi.org/10.1016/j.jcs.2008.01.006
24 https://doi.org/10.1016/j.jcs.2008.09.001
25 https://doi.org/10.1016/s0168-1923(99)00020-9
26 https://doi.org/10.1016/s1161-0301(99)00036-2
27 https://doi.org/10.1017/s0021859600068040
28 https://doi.org/10.1017/s0021859608007958
29 https://doi.org/10.1029/2008jd010382
30 https://doi.org/10.1071/ea9710546
31 https://doi.org/10.1071/pp9770785
32 https://doi.org/10.1071/pp9940869
33 https://doi.org/10.1080/10408398909527496
34 https://doi.org/10.1093/jxb/47.5.623
35 https://doi.org/10.1111/j.1365-2621.2006.01313.x
36 https://doi.org/10.1126/science.269.5224.676
37 https://doi.org/10.1175/1520-0442(1997)010<2548:eseils>2.0.co;2
38 https://doi.org/10.1175/1520-0477(1996)077<0437:tnyrp>2.0.co;2
39 https://doi.org/10.1256/wea.38.02
40 https://doi.org/10.1626/pps.9.323
41 https://doi.org/10.2134/agronj1989.00021962008100060022x
42 https://doi.org/10.3354/cr021165
43 https://doi.org/10.4141/cjps77-105
44 https://doi.org/10.5194/hess-13-17-2009
45 schema:datePublished 2011-01
46 schema:datePublishedReg 2011-01-01
47 schema:description Climate and meteorological conditions greatly affect agricultural activities, modifying plant responses and determining the quantity and the quality of production. In this respect, the aim of this research was to analyze the quality of winter durum wheat (Triticum turgidum L. var. durum), in terms of protein content through the use of meteorological information. Meteorological conditions were described utilizing both local weather station data (air temperature, cumulated precipitation) and large-scale information available freely on the internet, such as geopotential height (GPH), sea surface temperature (SST), and the North Atlantic Oscillation (NAO) index. The analysis was carried out for the period 1997-2009 in the Tuscany region, Central Italy. Grain protein was positively correlated with air temperature during the February to June period, and negatively with cumulative precipitation during the entire period from November to June. Protein content was also negatively correlated with 500 hPa GPH over Gibraltar and North-Western Africa during the March to June period and with the SST of the Atlantic Ocean south-west of the Canary Islands during the January to June period. Finally, with regard to the NAO, winter durum wheat quality was positively correlated with the specific index for several months, in particular during the winter period. These results demonstrate that precipitation and air temperature over the production area represent two crucial variables driving the vegeto-productive responses of winter durum wheat. On the other hand, the use of large-scale meteorological information showed great potential from the perspective of a local quality forecast system setup.
48 schema:genre research_article
49 schema:inLanguage en
50 schema:isAccessibleForFree false
51 schema:isPartOf N5829af0ff58047e48559502b013cc3eb
52 N61a38efbab7a420eb00004760af9581f
53 sg:journal.1017657
54 schema:name The influence of climate on durum wheat quality in Tuscany, Central Italy
55 schema:pagination 87-96
56 schema:productId N24e8cf4cb07b4b64ab712636173abd8b
57 N5fe2c56863e04ef59ac3b5a915ace579
58 N7194c2e73da346219c233405dbfca385
59 N7e225c71b3f4497e8a0a22e1932a37b3
60 Nb1031c5237ba45cdb1767a972e853ba7
61 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043805986
62 https://doi.org/10.1007/s00484-010-0310-8
63 schema:sdDatePublished 2019-04-11T10:21
64 schema:sdLicense https://scigraph.springernature.com/explorer/license/
65 schema:sdPublisher N8f9bb895c3ee4cd68f564525177142bb
66 schema:url http://link.springer.com/10.1007%2Fs00484-010-0310-8
67 sgo:license sg:explorer/license/
68 sgo:sdDataset articles
69 rdf:type schema:ScholarlyArticle
70 N24e8cf4cb07b4b64ab712636173abd8b schema:name doi
71 schema:value 10.1007/s00484-010-0310-8
72 rdf:type schema:PropertyValue
73 N24f0221baf2444c89d2683f1a89f7fb2 rdf:first sg:person.015711742246.17
74 rdf:rest N2699027bd18949e39a40265e376bbcbe
75 N25c86cc0d672443f9711fef8a2882e43 rdf:first sg:person.012757716762.71
76 rdf:rest N4c0853de49a742fa85afbb4c0c616f47
77 N2699027bd18949e39a40265e376bbcbe rdf:first sg:person.0713637641.52
78 rdf:rest N295e2c2f6247449c8d03989ebc2aa4ef
79 N295e2c2f6247449c8d03989ebc2aa4ef rdf:first sg:person.01335773615.34
80 rdf:rest rdf:nil
81 N40cdf83348f54764ba9a7d7342fc2d2f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
82 schema:name Temperature
83 rdf:type schema:DefinedTerm
84 N4c0853de49a742fa85afbb4c0c616f47 rdf:first sg:person.01346514315.42
85 rdf:rest N24f0221baf2444c89d2683f1a89f7fb2
86 N5829af0ff58047e48559502b013cc3eb schema:issueNumber 1
87 rdf:type schema:PublicationIssue
88 N5fe2c56863e04ef59ac3b5a915ace579 schema:name pubmed_id
89 schema:value 20358232
90 rdf:type schema:PropertyValue
91 N61a38efbab7a420eb00004760af9581f schema:volumeNumber 55
92 rdf:type schema:PublicationVolume
93 N7194c2e73da346219c233405dbfca385 schema:name nlm_unique_id
94 schema:value 0374716
95 rdf:type schema:PropertyValue
96 N7ae6d9a80160436cbe7d16690fe21065 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Italy
98 rdf:type schema:DefinedTerm
99 N7e225c71b3f4497e8a0a22e1932a37b3 schema:name readcube_id
100 schema:value d0aa2879221fcfcd54ff9b5619ebb98f276408b1d09115d1ee3346196883e36a
101 rdf:type schema:PropertyValue
102 N8e5e4e59837048f0b88990112934cb05 schema:name CNR-Institute of Biometeorology, Via Caproni, 8, 50145, Florence, Italy
103 rdf:type schema:Organization
104 N8f1f8737a23d4cbc9ef813d1936e906e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Climate
106 rdf:type schema:DefinedTerm
107 N8f9bb895c3ee4cd68f564525177142bb schema:name Springer Nature - SN SciGraph project
108 rdf:type schema:Organization
109 N99a9b99b4e314c1196ef0a12c71e9c2f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Triticum
111 rdf:type schema:DefinedTerm
112 N9c854de224184aba9bff2f98afd9fee1 schema:name CNR-Institute of Biometeorology, Via Caproni, 8, 50145, Florence, Italy
113 rdf:type schema:Organization
114 Nab74842cdd574bfeb725a77c248b07f5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Time Factors
116 rdf:type schema:DefinedTerm
117 Nb1031c5237ba45cdb1767a972e853ba7 schema:name dimensions_id
118 schema:value pub.1043805986
119 rdf:type schema:PropertyValue
120 Nd2e7e38014134c789421f40773a4351e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Rain
122 rdf:type schema:DefinedTerm
123 Neae300dd5a3b4a259b8a18f3453c748a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Plant Proteins
125 rdf:type schema:DefinedTerm
126 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
127 schema:name Earth Sciences
128 rdf:type schema:DefinedTerm
129 anzsrc-for:0401 schema:inDefinedTermSet anzsrc-for:
130 schema:name Atmospheric Sciences
131 rdf:type schema:DefinedTerm
132 sg:journal.1017657 schema:issn 0020-7128
133 1432-1254
134 schema:name International Journal of Biometeorology
135 rdf:type schema:Periodical
136 sg:person.012757716762.71 schema:affiliation https://www.grid.ac/institutes/grid.8404.8
137 schema:familyName Dalla Marta
138 schema:givenName Anna
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012757716762.71
140 rdf:type schema:Person
141 sg:person.01335773615.34 schema:affiliation https://www.grid.ac/institutes/grid.8404.8
142 schema:familyName Orlandini
143 schema:givenName S.
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01335773615.34
145 rdf:type schema:Person
146 sg:person.01346514315.42 schema:affiliation N9c854de224184aba9bff2f98afd9fee1
147 schema:familyName Grifoni
148 schema:givenName D.
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01346514315.42
150 rdf:type schema:Person
151 sg:person.015711742246.17 schema:affiliation https://www.grid.ac/institutes/grid.8404.8
152 schema:familyName Mancini
153 schema:givenName M.
154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015711742246.17
155 rdf:type schema:Person
156 sg:person.0713637641.52 schema:affiliation N8e5e4e59837048f0b88990112934cb05
157 schema:familyName Zipoli
158 schema:givenName G.
159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0713637641.52
160 rdf:type schema:Person
161 sg:pub.10.1023/a:1005314315270 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035234324
162 https://doi.org/10.1023/a:1005314315270
163 rdf:type schema:CreativeWork
164 sg:pub.10.1023/a:1014217317898 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006785947
165 https://doi.org/10.1023/a:1014217317898
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1002/(sici)1097-0088(199710)17:12<1285::aid-joc198>3.0.co;2-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053288618
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1002/(sici)1097-0088(19971115)17:13<1433::aid-joc203>3.0.co;2-p schema:sameAs https://app.dimensions.ai/details/publication/pub.1050153693
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1002/jsfa.2740260504 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027075592
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1002/jsfa.2740370502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023052902
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1002/jsfa.2855 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048811072
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1006/jcrs.1996.0042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026274840
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1006/jcrs.1999.0258 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054489087
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1006/jcrs.2000.0313 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054489091
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1016/0002-1571(68)90034-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014715995
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1016/j.agrformet.2005.02.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032158984
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1016/j.jcs.2008.01.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045273167
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1016/j.jcs.2008.09.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004848866
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1016/s0168-1923(99)00020-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006502746
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1016/s1161-0301(99)00036-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049864440
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1017/s0021859600068040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010117512
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1017/s0021859608007958 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052551555
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1029/2008jd010382 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019666362
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1071/ea9710546 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034124367
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1071/pp9770785 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035760695
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1071/pp9940869 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013722415
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1080/10408398909527496 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013232128
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1093/jxb/47.5.623 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016321658
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1111/j.1365-2621.2006.01313.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1052638602
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1126/science.269.5224.676 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062550625
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1175/1520-0442(1997)010<2548:eseils>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018114608
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1175/1520-0477(1996)077<0437:tnyrp>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011849757
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1256/wea.38.02 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032704551
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1626/pps.9.323 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051676485
222 rdf:type schema:CreativeWork
223 https://doi.org/10.2134/agronj1989.00021962008100060022x schema:sameAs https://app.dimensions.ai/details/publication/pub.1068992412
224 rdf:type schema:CreativeWork
225 https://doi.org/10.3354/cr021165 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071159482
226 rdf:type schema:CreativeWork
227 https://doi.org/10.4141/cjps77-105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025558922
228 rdf:type schema:CreativeWork
229 https://doi.org/10.5194/hess-13-17-2009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012252889
230 rdf:type schema:CreativeWork
231 https://www.grid.ac/institutes/grid.8404.8 schema:alternateName University of Florence
232 schema:name Department of Plant, Soil and Environmental Science, University of Florence, Piazzale delle Cascine 18, 50144, Florence, Italy
233 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...