Spatiotemporal sampling strategy for characterization of hydraulic properties in heterogeneous soils View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2020-10-03

AUTHORS

Danyang Yu, Yuanyuan Zha, Liangsheng Shi, Andrei Bolotov, Chak-Hau Michael Tso

ABSTRACT

Accurate characterization and prediction of soil moisture distribution and solute transport in vadose zone require detailed knowledge of the spatial distribution of soil hydraulic properties. Since the direct measurements of these unknown properties are challenging, many studies invert the soil hydraulic parameters by incorporating observation data (e.g., soil moisture and pressure head) at selected point sampling locations into soil moisture flow models. However, a cost-effective sampling strategy for where and when to collect the data, which is vital for saving the costs for monitoring and data interpretation, is relatively rare compared to the direct parameter retrieving efforts. Here, an optimal spatial–temporal sampling strategy was proposed based on cross-correlation analysis between observed state variables and soil hydraulic parameters. Besides, the effects of meteorological condition, observation type, bottom boundary condition, and correlation scale of soil hydraulic parameters are also demonstrated. The proposed sampling strategy was assessed by both synthetic numerical experiments and a real-world case study. Results suggest the retrieval accuracy of heterogeneous soil is acceptable if the spatial/temporal sampling interval is set to be one spatial/temporal correlation length of soil moisture. Besides, surface observation contains the most plentiful information which could be used to derive root-zone soil moisture/parameters, but this ability depends on the correlation scale of soil hydraulic parameters. Besides, the temporal value of soil moisture depends on meteorological condition. It is not necessary to sample repeatedly during dry periods, but more attention should be paid to the observations after rainfall events. More... »

PAGES

737-757

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00477-020-01882-1

DOI

http://dx.doi.org/10.1007/s00477-020-01882-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1131417187


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0907", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Environmental Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "State Key Laboratory of Water Resources and Hydropower Engineering Sciences, Wuhan University, 430072, Wuhan, Hubei, China", 
          "id": "http://www.grid.ac/institutes/grid.49470.3e", 
          "name": [
            "State Key Laboratory of Water Resources and Hydropower Engineering Sciences, Wuhan University, 430072, Wuhan, Hubei, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yu", 
        "givenName": "Danyang", 
        "id": "sg:person.010463715523.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010463715523.68"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, Chongqing Jiaotong University, 400074, Chongqing, China", 
          "id": "http://www.grid.ac/institutes/grid.440679.8", 
          "name": [
            "State Key Laboratory of Water Resources and Hydropower Engineering Sciences, Wuhan University, 430072, Wuhan, Hubei, China", 
            "Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, Chongqing Jiaotong University, 400074, Chongqing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zha", 
        "givenName": "Yuanyuan", 
        "id": "sg:person.01041615256.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01041615256.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "State Key Laboratory of Water Resources and Hydropower Engineering Sciences, Wuhan University, 430072, Wuhan, Hubei, China", 
          "id": "http://www.grid.ac/institutes/grid.49470.3e", 
          "name": [
            "State Key Laboratory of Water Resources and Hydropower Engineering Sciences, Wuhan University, 430072, Wuhan, Hubei, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shi", 
        "givenName": "Liangsheng", 
        "id": "sg:person.013753244525.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013753244525.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Meteorology and Climatology, Russian State Agrarian University - Moscow Timiryazev Agricultural Academy, 127550, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Department of Meteorology and Climatology, Russian State Agrarian University - Moscow Timiryazev Agricultural Academy, 127550, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bolotov", 
        "givenName": "Andrei", 
        "id": "sg:person.010770330265.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010770330265.82"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Lancaster Environment Centre, Lancaster University, Lancaster, UK", 
          "id": "http://www.grid.ac/institutes/grid.9835.7", 
          "name": [
            "UK Centre for Ecology and Hydrology, Lancaster, UK", 
            "Lancaster Environment Centre, Lancaster University, Lancaster, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tso", 
        "givenName": "Chak-Hau Michael", 
        "id": "sg:person.011557056561.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011557056561.74"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00477-008-0289-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029417657", 
          "https://doi.org/10.1007/s00477-008-0289-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00477-019-01764-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1124590212", 
          "https://doi.org/10.1007/s00477-019-01764-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10596-013-9351-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000005781", 
          "https://doi.org/10.1007/s10596-013-9351-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00477-020-01815-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1127517851", 
          "https://doi.org/10.1007/s00477-020-01815-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00477-018-1541-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103191079", 
          "https://doi.org/10.1007/s00477-018-1541-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00477-010-0392-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029308599", 
          "https://doi.org/10.1007/s00477-010-0392-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-030-18383-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1117043784", 
          "https://doi.org/10.1007/978-3-030-18383-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00477-012-0613-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008018272", 
          "https://doi.org/10.1007/s00477-012-0613-x"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2020-10-03", 
    "datePublishedReg": "2020-10-03", 
    "description": "Accurate characterization and prediction of soil moisture distribution and solute transport in vadose zone require detailed knowledge of the spatial distribution of soil hydraulic properties. Since the direct measurements of these unknown properties are challenging, many studies invert the soil hydraulic parameters by incorporating observation data (e.g., soil moisture and pressure head) at selected point sampling locations into soil moisture flow models. However, a cost-effective sampling strategy for where and when to collect the data, which is vital for saving the costs for monitoring and data interpretation, is relatively rare compared to the direct parameter retrieving efforts. Here, an optimal spatial\u2013temporal sampling strategy was proposed based on cross-correlation analysis between observed state variables and soil hydraulic parameters. Besides, the effects of meteorological condition, observation type, bottom boundary condition, and correlation scale of soil hydraulic parameters are also demonstrated. The proposed sampling strategy was assessed by both synthetic numerical experiments and a real-world case study. Results suggest the retrieval accuracy of heterogeneous soil is acceptable if the spatial/temporal sampling interval is set to be one spatial/temporal correlation length of soil moisture. Besides, surface observation contains the most plentiful information which could be used to derive root-zone soil moisture/parameters, but this ability depends on the correlation scale of soil hydraulic parameters. Besides, the temporal value of soil moisture depends on meteorological condition. It is not necessary to sample repeatedly during dry periods, but more attention should be paid to the observations after rainfall events.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00477-020-01882-1", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.9415548", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.8270794", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.8281612", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1039987", 
        "issn": [
          "1436-3240", 
          "1436-3259"
        ], 
        "name": "Stochastic Environmental Research and Risk Assessment", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "35"
      }
    ], 
    "keywords": [
      "soil hydraulic parameters", 
      "hydraulic parameters", 
      "soil moisture", 
      "heterogeneous soils", 
      "hydraulic properties", 
      "moisture flow model", 
      "bottom boundary condition", 
      "soil moisture distribution", 
      "cost-effective sampling strategy", 
      "sampling strategy", 
      "soil hydraulic properties", 
      "synthetic numerical experiments", 
      "moisture distribution", 
      "meteorological conditions", 
      "flow model", 
      "correlation scale", 
      "temporal sampling interval", 
      "vadose zone", 
      "observed state variables", 
      "boundary conditions", 
      "solute transport", 
      "dry period", 
      "rainfall events", 
      "spatial distribution", 
      "surface observations", 
      "soil", 
      "state variables", 
      "temporal correlation length", 
      "accurate characterization", 
      "sampling interval", 
      "observation types", 
      "moisture", 
      "observation data", 
      "direct measurement", 
      "numerical experiments", 
      "properties", 
      "parameters", 
      "real-world case study", 
      "unknown properties", 
      "plentiful information", 
      "case study", 
      "detailed knowledge", 
      "conditions", 
      "scale", 
      "temporal values", 
      "distribution", 
      "characterization", 
      "retrieval accuracy", 
      "data interpretation", 
      "correlation length", 
      "more attention", 
      "zone", 
      "measurements", 
      "transport", 
      "accuracy", 
      "monitoring", 
      "cost", 
      "prediction", 
      "strategies", 
      "cross-correlation analysis", 
      "experiments", 
      "location", 
      "efforts", 
      "model", 
      "observations", 
      "variables", 
      "data", 
      "results", 
      "length", 
      "point", 
      "values", 
      "study", 
      "effect", 
      "types", 
      "period", 
      "knowledge", 
      "analysis", 
      "information", 
      "attention", 
      "ability", 
      "events", 
      "interpretation", 
      "interval"
    ], 
    "name": "Spatiotemporal sampling strategy for characterization of hydraulic properties in heterogeneous soils", 
    "pagination": "737-757", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1131417187"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00477-020-01882-1"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00477-020-01882-1", 
      "https://app.dimensions.ai/details/publication/pub.1131417187"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:37", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_836.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00477-020-01882-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00477-020-01882-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00477-020-01882-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00477-020-01882-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00477-020-01882-1'


 

This table displays all metadata directly associated to this object as RDF triples.

218 TRIPLES      22 PREDICATES      116 URIs      100 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00477-020-01882-1 schema:about anzsrc-for:09
2 anzsrc-for:0907
3 schema:author N11f17fcaf0ae4af8af32b31139e15964
4 schema:citation sg:pub.10.1007/978-3-030-18383-7
5 sg:pub.10.1007/s00477-008-0289-4
6 sg:pub.10.1007/s00477-010-0392-1
7 sg:pub.10.1007/s00477-012-0613-x
8 sg:pub.10.1007/s00477-018-1541-1
9 sg:pub.10.1007/s00477-019-01764-1
10 sg:pub.10.1007/s00477-020-01815-y
11 sg:pub.10.1007/s10596-013-9351-5
12 schema:datePublished 2020-10-03
13 schema:datePublishedReg 2020-10-03
14 schema:description Accurate characterization and prediction of soil moisture distribution and solute transport in vadose zone require detailed knowledge of the spatial distribution of soil hydraulic properties. Since the direct measurements of these unknown properties are challenging, many studies invert the soil hydraulic parameters by incorporating observation data (e.g., soil moisture and pressure head) at selected point sampling locations into soil moisture flow models. However, a cost-effective sampling strategy for where and when to collect the data, which is vital for saving the costs for monitoring and data interpretation, is relatively rare compared to the direct parameter retrieving efforts. Here, an optimal spatial–temporal sampling strategy was proposed based on cross-correlation analysis between observed state variables and soil hydraulic parameters. Besides, the effects of meteorological condition, observation type, bottom boundary condition, and correlation scale of soil hydraulic parameters are also demonstrated. The proposed sampling strategy was assessed by both synthetic numerical experiments and a real-world case study. Results suggest the retrieval accuracy of heterogeneous soil is acceptable if the spatial/temporal sampling interval is set to be one spatial/temporal correlation length of soil moisture. Besides, surface observation contains the most plentiful information which could be used to derive root-zone soil moisture/parameters, but this ability depends on the correlation scale of soil hydraulic parameters. Besides, the temporal value of soil moisture depends on meteorological condition. It is not necessary to sample repeatedly during dry periods, but more attention should be paid to the observations after rainfall events.
15 schema:genre article
16 schema:inLanguage en
17 schema:isAccessibleForFree true
18 schema:isPartOf N7bfd4ea470974e39b017478f9eb9089b
19 N81092f8824124308b13d8a3c6d1ef1dd
20 sg:journal.1039987
21 schema:keywords ability
22 accuracy
23 accurate characterization
24 analysis
25 attention
26 bottom boundary condition
27 boundary conditions
28 case study
29 characterization
30 conditions
31 correlation length
32 correlation scale
33 cost
34 cost-effective sampling strategy
35 cross-correlation analysis
36 data
37 data interpretation
38 detailed knowledge
39 direct measurement
40 distribution
41 dry period
42 effect
43 efforts
44 events
45 experiments
46 flow model
47 heterogeneous soils
48 hydraulic parameters
49 hydraulic properties
50 information
51 interpretation
52 interval
53 knowledge
54 length
55 location
56 measurements
57 meteorological conditions
58 model
59 moisture
60 moisture distribution
61 moisture flow model
62 monitoring
63 more attention
64 numerical experiments
65 observation data
66 observation types
67 observations
68 observed state variables
69 parameters
70 period
71 plentiful information
72 point
73 prediction
74 properties
75 rainfall events
76 real-world case study
77 results
78 retrieval accuracy
79 sampling interval
80 sampling strategy
81 scale
82 soil
83 soil hydraulic parameters
84 soil hydraulic properties
85 soil moisture
86 soil moisture distribution
87 solute transport
88 spatial distribution
89 state variables
90 strategies
91 study
92 surface observations
93 synthetic numerical experiments
94 temporal correlation length
95 temporal sampling interval
96 temporal values
97 transport
98 types
99 unknown properties
100 vadose zone
101 values
102 variables
103 zone
104 schema:name Spatiotemporal sampling strategy for characterization of hydraulic properties in heterogeneous soils
105 schema:pagination 737-757
106 schema:productId N98cc5c564a1442b882439e1f4a3b6331
107 Nd15f6ad848c84b7498687a12ba749ec2
108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1131417187
109 https://doi.org/10.1007/s00477-020-01882-1
110 schema:sdDatePublished 2022-05-20T07:37
111 schema:sdLicense https://scigraph.springernature.com/explorer/license/
112 schema:sdPublisher Nc920adab3fa4474faf7db5bf542ed589
113 schema:url https://doi.org/10.1007/s00477-020-01882-1
114 sgo:license sg:explorer/license/
115 sgo:sdDataset articles
116 rdf:type schema:ScholarlyArticle
117 N11f17fcaf0ae4af8af32b31139e15964 rdf:first sg:person.010463715523.68
118 rdf:rest N4be23139b66d4e23b718a7f9a56e9567
119 N1ffc4d70deb04f2d80ee2f6bface1449 rdf:first sg:person.011557056561.74
120 rdf:rest rdf:nil
121 N4be23139b66d4e23b718a7f9a56e9567 rdf:first sg:person.01041615256.23
122 rdf:rest Nfe9076a05ef94a119e47fc29a8752957
123 N73150d3d18794e78ac0b2115ed38ad13 rdf:first sg:person.010770330265.82
124 rdf:rest N1ffc4d70deb04f2d80ee2f6bface1449
125 N7bfd4ea470974e39b017478f9eb9089b schema:volumeNumber 35
126 rdf:type schema:PublicationVolume
127 N81092f8824124308b13d8a3c6d1ef1dd schema:issueNumber 3
128 rdf:type schema:PublicationIssue
129 N98cc5c564a1442b882439e1f4a3b6331 schema:name dimensions_id
130 schema:value pub.1131417187
131 rdf:type schema:PropertyValue
132 Nc920adab3fa4474faf7db5bf542ed589 schema:name Springer Nature - SN SciGraph project
133 rdf:type schema:Organization
134 Nd15f6ad848c84b7498687a12ba749ec2 schema:name doi
135 schema:value 10.1007/s00477-020-01882-1
136 rdf:type schema:PropertyValue
137 Nfe9076a05ef94a119e47fc29a8752957 rdf:first sg:person.013753244525.37
138 rdf:rest N73150d3d18794e78ac0b2115ed38ad13
139 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
140 schema:name Engineering
141 rdf:type schema:DefinedTerm
142 anzsrc-for:0907 schema:inDefinedTermSet anzsrc-for:
143 schema:name Environmental Engineering
144 rdf:type schema:DefinedTerm
145 sg:grant.8270794 http://pending.schema.org/fundedItem sg:pub.10.1007/s00477-020-01882-1
146 rdf:type schema:MonetaryGrant
147 sg:grant.8281612 http://pending.schema.org/fundedItem sg:pub.10.1007/s00477-020-01882-1
148 rdf:type schema:MonetaryGrant
149 sg:grant.9415548 http://pending.schema.org/fundedItem sg:pub.10.1007/s00477-020-01882-1
150 rdf:type schema:MonetaryGrant
151 sg:journal.1039987 schema:issn 1436-3240
152 1436-3259
153 schema:name Stochastic Environmental Research and Risk Assessment
154 schema:publisher Springer Nature
155 rdf:type schema:Periodical
156 sg:person.01041615256.23 schema:affiliation grid-institutes:grid.440679.8
157 schema:familyName Zha
158 schema:givenName Yuanyuan
159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01041615256.23
160 rdf:type schema:Person
161 sg:person.010463715523.68 schema:affiliation grid-institutes:grid.49470.3e
162 schema:familyName Yu
163 schema:givenName Danyang
164 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010463715523.68
165 rdf:type schema:Person
166 sg:person.010770330265.82 schema:affiliation grid-institutes:None
167 schema:familyName Bolotov
168 schema:givenName Andrei
169 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010770330265.82
170 rdf:type schema:Person
171 sg:person.011557056561.74 schema:affiliation grid-institutes:grid.9835.7
172 schema:familyName Tso
173 schema:givenName Chak-Hau Michael
174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011557056561.74
175 rdf:type schema:Person
176 sg:person.013753244525.37 schema:affiliation grid-institutes:grid.49470.3e
177 schema:familyName Shi
178 schema:givenName Liangsheng
179 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013753244525.37
180 rdf:type schema:Person
181 sg:pub.10.1007/978-3-030-18383-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1117043784
182 https://doi.org/10.1007/978-3-030-18383-7
183 rdf:type schema:CreativeWork
184 sg:pub.10.1007/s00477-008-0289-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029417657
185 https://doi.org/10.1007/s00477-008-0289-4
186 rdf:type schema:CreativeWork
187 sg:pub.10.1007/s00477-010-0392-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029308599
188 https://doi.org/10.1007/s00477-010-0392-1
189 rdf:type schema:CreativeWork
190 sg:pub.10.1007/s00477-012-0613-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1008018272
191 https://doi.org/10.1007/s00477-012-0613-x
192 rdf:type schema:CreativeWork
193 sg:pub.10.1007/s00477-018-1541-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103191079
194 https://doi.org/10.1007/s00477-018-1541-1
195 rdf:type schema:CreativeWork
196 sg:pub.10.1007/s00477-019-01764-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1124590212
197 https://doi.org/10.1007/s00477-019-01764-1
198 rdf:type schema:CreativeWork
199 sg:pub.10.1007/s00477-020-01815-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1127517851
200 https://doi.org/10.1007/s00477-020-01815-y
201 rdf:type schema:CreativeWork
202 sg:pub.10.1007/s10596-013-9351-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000005781
203 https://doi.org/10.1007/s10596-013-9351-5
204 rdf:type schema:CreativeWork
205 grid-institutes:None schema:alternateName Department of Meteorology and Climatology, Russian State Agrarian University - Moscow Timiryazev Agricultural Academy, 127550, Moscow, Russia
206 schema:name Department of Meteorology and Climatology, Russian State Agrarian University - Moscow Timiryazev Agricultural Academy, 127550, Moscow, Russia
207 rdf:type schema:Organization
208 grid-institutes:grid.440679.8 schema:alternateName Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, Chongqing Jiaotong University, 400074, Chongqing, China
209 schema:name Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, Chongqing Jiaotong University, 400074, Chongqing, China
210 State Key Laboratory of Water Resources and Hydropower Engineering Sciences, Wuhan University, 430072, Wuhan, Hubei, China
211 rdf:type schema:Organization
212 grid-institutes:grid.49470.3e schema:alternateName State Key Laboratory of Water Resources and Hydropower Engineering Sciences, Wuhan University, 430072, Wuhan, Hubei, China
213 schema:name State Key Laboratory of Water Resources and Hydropower Engineering Sciences, Wuhan University, 430072, Wuhan, Hubei, China
214 rdf:type schema:Organization
215 grid-institutes:grid.9835.7 schema:alternateName Lancaster Environment Centre, Lancaster University, Lancaster, UK
216 schema:name Lancaster Environment Centre, Lancaster University, Lancaster, UK
217 UK Centre for Ecology and Hydrology, Lancaster, UK
218 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...