Optimization of agricultural water–food–energy nexus in a random environment: an integrated modelling approach View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04-06

AUTHORS

Mo Li, Vijay P. Singh, Qiang Fu, Dong Liu, Tianxiao Li, Yan Zhou

ABSTRACT

N/A

References to SciGraph publications

  • 2016-03. Human adaptations in food, energy, and water systems in JOURNAL OF ENVIRONMENTAL STUDIES AND SCIENCES
  • 2009-03. Two-stage fuzzy chance-constrained programming: application to water resources management under dual uncertainties in STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT
  • 2013-07. Integrated analysis of climate change, land-use, energy and water strategies in NATURE CLIMATE CHANGE
  • Journal

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00477-019-01672-4

    DOI

    http://dx.doi.org/10.1007/s00477-019-01672-4

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1113283335


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "author": [
          {
            "familyName": "Li", 
            "givenName": "Mo", 
            "type": "Person"
          }, 
          {
            "familyName": "Singh", 
            "givenName": "Vijay P.", 
            "type": "Person"
          }, 
          {
            "familyName": "Fu", 
            "givenName": "Qiang", 
            "type": "Person"
          }, 
          {
            "familyName": "Liu", 
            "givenName": "Dong", 
            "type": "Person"
          }, 
          {
            "familyName": "Li", 
            "givenName": "Tianxiao", 
            "type": "Person"
          }, 
          {
            "familyName": "Zhou", 
            "givenName": "Yan", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s00477-008-0221-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001288430", 
              "https://doi.org/10.1007/s00477-008-0221-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00477-008-0221-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001288430", 
              "https://doi.org/10.1007/s00477-008-0221-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.advwatres.2016.12.017", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014904892"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.advwatres.2016.05.011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015625032"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nclimate1789", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029017774", 
              "https://doi.org/10.1038/nclimate1789"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s13412-016-0375-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043347346", 
              "https://doi.org/10.1007/s13412-016-0375-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.apm.2014.03.043", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043457143"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ejor.2013.01.011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044737680"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.enpol.2011.09.039", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053147086"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1061/(asce)he.1943-5584.0000866", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057634444"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/1748-9326/aa5e6d", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083715739"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.envsoft.2017.03.034", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084525945"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4236/gep.2017.54008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085068995"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jclepro.2017.05.092", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085430978"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3390/w9060378", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085606044"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.apenergy.2017.05.159", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1086106219"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.envsci.2017.07.007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091327856"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.advwatres.2017.10.027", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092329153"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.agwat.2017.10.016", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092336858"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.advwatres.2017.11.014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092696588"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.enpol.2017.11.037", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1099913682"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cosust.2018.04.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1104265909"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jhydrol.2018.07.024", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105451191"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.scitotenv.2018.09.291", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1107204495"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jclepro.2018.10.348", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1107981945"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jclepro.2018.10.348", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1107981945"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-04-06", 
        "datePublishedReg": "2019-04-06", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s00477-019-01672-4", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1039987", 
            "issn": [
              "1436-3240", 
              "1436-3259"
            ], 
            "name": "Stochastic Environmental Research and Risk Assessment", 
            "type": "Periodical"
          }
        ], 
        "name": "Optimization of agricultural water\u2013food\u2013energy nexus in a random environment: an integrated modelling approach", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00477-019-01672-4"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1113283335"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00477-019-01672-4", 
          "https://app.dimensions.ai/details/publication/pub.1113283335"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T14:16", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000372_0000000372/records_117087_00000003.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007/s00477-019-01672-4"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00477-019-01672-4'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00477-019-01672-4'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00477-019-01672-4'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00477-019-01672-4'


     

    This table displays all metadata directly associated to this object as RDF triples.

    136 TRIPLES      18 PREDICATES      43 URIs      13 LITERALS      4 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00477-019-01672-4 schema:author N74956716043a456a954dbb19ba516f6a
    2 schema:citation sg:pub.10.1007/s00477-008-0221-y
    3 sg:pub.10.1007/s13412-016-0375-8
    4 sg:pub.10.1038/nclimate1789
    5 https://doi.org/10.1016/j.advwatres.2016.05.011
    6 https://doi.org/10.1016/j.advwatres.2016.12.017
    7 https://doi.org/10.1016/j.advwatres.2017.10.027
    8 https://doi.org/10.1016/j.advwatres.2017.11.014
    9 https://doi.org/10.1016/j.agwat.2017.10.016
    10 https://doi.org/10.1016/j.apenergy.2017.05.159
    11 https://doi.org/10.1016/j.apm.2014.03.043
    12 https://doi.org/10.1016/j.cosust.2018.04.003
    13 https://doi.org/10.1016/j.ejor.2013.01.011
    14 https://doi.org/10.1016/j.enpol.2011.09.039
    15 https://doi.org/10.1016/j.enpol.2017.11.037
    16 https://doi.org/10.1016/j.envsci.2017.07.007
    17 https://doi.org/10.1016/j.envsoft.2017.03.034
    18 https://doi.org/10.1016/j.jclepro.2017.05.092
    19 https://doi.org/10.1016/j.jclepro.2018.10.348
    20 https://doi.org/10.1016/j.jhydrol.2018.07.024
    21 https://doi.org/10.1016/j.scitotenv.2018.09.291
    22 https://doi.org/10.1061/(asce)he.1943-5584.0000866
    23 https://doi.org/10.1088/1748-9326/aa5e6d
    24 https://doi.org/10.3390/w9060378
    25 https://doi.org/10.4236/gep.2017.54008
    26 schema:datePublished 2019-04-06
    27 schema:datePublishedReg 2019-04-06
    28 schema:genre research_article
    29 schema:inLanguage en
    30 schema:isAccessibleForFree false
    31 schema:isPartOf sg:journal.1039987
    32 schema:name Optimization of agricultural water–food–energy nexus in a random environment: an integrated modelling approach
    33 schema:productId N34ce5665bb0b427285d812c8b4ff09dc
    34 N55e390375a5b44c4bdb3a2e971d5e4ec
    35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113283335
    36 https://doi.org/10.1007/s00477-019-01672-4
    37 schema:sdDatePublished 2019-04-11T14:16
    38 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    39 schema:sdPublisher Ne26815fe77144dbc87b58ff6dbad18f3
    40 schema:url http://link.springer.com/10.1007/s00477-019-01672-4
    41 sgo:license sg:explorer/license/
    42 sgo:sdDataset articles
    43 rdf:type schema:ScholarlyArticle
    44 N02f879373e14488582db3780a497ec1c schema:familyName Singh
    45 schema:givenName Vijay P.
    46 rdf:type schema:Person
    47 N0c6a64e1a99a4e5d9c01263f79b1d95e rdf:first N4227d222b33f4f4586cf6db6c2afef96
    48 rdf:rest Nc09409a848e14d4d8a3d782b9ee95aa0
    49 N14e100c167b048eaa7d2afea3ea8feaf rdf:first Ne2c9954b8691441e972deb1ed5ba4fc2
    50 rdf:rest N9f3d03d573284bc48bd1f1f86aff60ee
    51 N34ce5665bb0b427285d812c8b4ff09dc schema:name doi
    52 schema:value 10.1007/s00477-019-01672-4
    53 rdf:type schema:PropertyValue
    54 N3f23070e10eb44919633f5e0f59fb699 schema:familyName Li
    55 schema:givenName Mo
    56 rdf:type schema:Person
    57 N4227d222b33f4f4586cf6db6c2afef96 schema:familyName Fu
    58 schema:givenName Qiang
    59 rdf:type schema:Person
    60 N4c95ddc2164c48d5a44c4d4c8e9469d5 schema:familyName Liu
    61 schema:givenName Dong
    62 rdf:type schema:Person
    63 N55e390375a5b44c4bdb3a2e971d5e4ec schema:name dimensions_id
    64 schema:value pub.1113283335
    65 rdf:type schema:PropertyValue
    66 N74956716043a456a954dbb19ba516f6a rdf:first N3f23070e10eb44919633f5e0f59fb699
    67 rdf:rest Nea2270f13a9c48348fa984086fa4da2a
    68 N875aa8e2f0b844488341c964115566b3 schema:familyName Zhou
    69 schema:givenName Yan
    70 rdf:type schema:Person
    71 N9f3d03d573284bc48bd1f1f86aff60ee rdf:first N875aa8e2f0b844488341c964115566b3
    72 rdf:rest rdf:nil
    73 Nc09409a848e14d4d8a3d782b9ee95aa0 rdf:first N4c95ddc2164c48d5a44c4d4c8e9469d5
    74 rdf:rest N14e100c167b048eaa7d2afea3ea8feaf
    75 Ne26815fe77144dbc87b58ff6dbad18f3 schema:name Springer Nature - SN SciGraph project
    76 rdf:type schema:Organization
    77 Ne2c9954b8691441e972deb1ed5ba4fc2 schema:familyName Li
    78 schema:givenName Tianxiao
    79 rdf:type schema:Person
    80 Nea2270f13a9c48348fa984086fa4da2a rdf:first N02f879373e14488582db3780a497ec1c
    81 rdf:rest N0c6a64e1a99a4e5d9c01263f79b1d95e
    82 sg:journal.1039987 schema:issn 1436-3240
    83 1436-3259
    84 schema:name Stochastic Environmental Research and Risk Assessment
    85 rdf:type schema:Periodical
    86 sg:pub.10.1007/s00477-008-0221-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1001288430
    87 https://doi.org/10.1007/s00477-008-0221-y
    88 rdf:type schema:CreativeWork
    89 sg:pub.10.1007/s13412-016-0375-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043347346
    90 https://doi.org/10.1007/s13412-016-0375-8
    91 rdf:type schema:CreativeWork
    92 sg:pub.10.1038/nclimate1789 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029017774
    93 https://doi.org/10.1038/nclimate1789
    94 rdf:type schema:CreativeWork
    95 https://doi.org/10.1016/j.advwatres.2016.05.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015625032
    96 rdf:type schema:CreativeWork
    97 https://doi.org/10.1016/j.advwatres.2016.12.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014904892
    98 rdf:type schema:CreativeWork
    99 https://doi.org/10.1016/j.advwatres.2017.10.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092329153
    100 rdf:type schema:CreativeWork
    101 https://doi.org/10.1016/j.advwatres.2017.11.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092696588
    102 rdf:type schema:CreativeWork
    103 https://doi.org/10.1016/j.agwat.2017.10.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092336858
    104 rdf:type schema:CreativeWork
    105 https://doi.org/10.1016/j.apenergy.2017.05.159 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086106219
    106 rdf:type schema:CreativeWork
    107 https://doi.org/10.1016/j.apm.2014.03.043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043457143
    108 rdf:type schema:CreativeWork
    109 https://doi.org/10.1016/j.cosust.2018.04.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104265909
    110 rdf:type schema:CreativeWork
    111 https://doi.org/10.1016/j.ejor.2013.01.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044737680
    112 rdf:type schema:CreativeWork
    113 https://doi.org/10.1016/j.enpol.2011.09.039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053147086
    114 rdf:type schema:CreativeWork
    115 https://doi.org/10.1016/j.enpol.2017.11.037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099913682
    116 rdf:type schema:CreativeWork
    117 https://doi.org/10.1016/j.envsci.2017.07.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091327856
    118 rdf:type schema:CreativeWork
    119 https://doi.org/10.1016/j.envsoft.2017.03.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084525945
    120 rdf:type schema:CreativeWork
    121 https://doi.org/10.1016/j.jclepro.2017.05.092 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085430978
    122 rdf:type schema:CreativeWork
    123 https://doi.org/10.1016/j.jclepro.2018.10.348 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107981945
    124 rdf:type schema:CreativeWork
    125 https://doi.org/10.1016/j.jhydrol.2018.07.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105451191
    126 rdf:type schema:CreativeWork
    127 https://doi.org/10.1016/j.scitotenv.2018.09.291 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107204495
    128 rdf:type schema:CreativeWork
    129 https://doi.org/10.1061/(asce)he.1943-5584.0000866 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057634444
    130 rdf:type schema:CreativeWork
    131 https://doi.org/10.1088/1748-9326/aa5e6d schema:sameAs https://app.dimensions.ai/details/publication/pub.1083715739
    132 rdf:type schema:CreativeWork
    133 https://doi.org/10.3390/w9060378 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085606044
    134 rdf:type schema:CreativeWork
    135 https://doi.org/10.4236/gep.2017.54008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085068995
    136 rdf:type schema:CreativeWork
     




    Preview window. Press ESC to close (or click here)


    ...