Optimal bioassay time allocations for multiple accidental chronic intakes of radioactive particles View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-29

AUTHORS

J. López-Fidalgo, J. G. Sánchez

ABSTRACT

Bioassays are applied to workers and other people exposed to radiation through routine or accidental intake of radioactive isotopes. The quantity of the isotope intake by an individual can be estimated from the measured quantities in the bioassays using the corresponding retention or excretion function. A retention (excretion) function represents the predicted activity of a radionuclide in the body, organ, or tissue or in a 24-h excreta at a particular time after the intake. The International Commission on Radiological Protection provides these biokinetic models. We have used these functions to compute optimal experimental designs for estimating the intake quantity in workers following radionuclide inhalation or ingestion. In particular, we have considered the case where the individual is exposed to a constant intake during some periods followed by other periods without intakes, which we called multiple constant intakes. The main aim of this work is finding the best times where the bioassay samples should be obtained in order to estimate optimally the actual intake of the last period. The problem is also extended to compute the next two or more bioassays to be performed. Measurements on the same worker are modeled through a correlation structure. The outline of the problem is established for a general case and results are given for a typical case as a real example. The methodology given in the paper can be applied to other cases with multiple constant intakes, e.g. in medical treatments where the patient is exposed to successive doses during particular periods. More... »

PAGES

1-10

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00477-019-01668-0

DOI

http://dx.doi.org/10.1007/s00477-019-01668-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1113101860


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Public Health and Health Services", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Navarra", 
          "id": "https://www.grid.ac/institutes/grid.5924.a", 
          "name": [
            "Unidad de Estad\u00edstica, ICS, Universidad de Navarra, Campus Universitario, 31080, Pamplona, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "L\u00f3pez-Fidalgo", 
        "givenName": "J.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Salamanca", 
          "id": "https://www.grid.ac/institutes/grid.11762.33", 
          "name": [
            "Universidad de Salamanca, Plaza de los Caidos s/n, 37002, Salamanca, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "S\u00e1nchez", 
        "givenName": "J. G.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s10260-014-0288-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004648677", 
          "https://doi.org/10.1007/s10260-014-0288-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/02664760500165313", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007213726"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/sim.2654", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008116938"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11749-012-0311-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014682181", 
          "https://doi.org/10.1007/s11749-012-0311-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00477-014-0892-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016905099", 
          "https://doi.org/10.1007/s00477-014-0892-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11749-006-0022-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017884462", 
          "https://doi.org/10.1007/s11749-006-0022-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00004032-200308000-00007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025361860"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00004032-200308000-00007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025361860"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00477-013-0731-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031946467", 
          "https://doi.org/10.1007/s00477-013-0731-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1032454235", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-0703-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032454235", 
          "https://doi.org/10.1007/978-1-4612-0703-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-0703-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032454235", 
          "https://doi.org/10.1007/978-1-4612-0703-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pst.375", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034990408"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pst.375", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034990408"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00004032-200510000-00005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040729909"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00004032-200510000-00005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040729909"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00004032-200510000-00005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040729909"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/01.hp.0000236783.34845.e6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044078853"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/01.hp.0000236783.34845.e6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044078853"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chemolab.2012.01.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049213869"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/rpd/ncl499", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060016702"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aoms/1177729442", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064401683"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03-29", 
    "datePublishedReg": "2019-03-29", 
    "description": "Bioassays are applied to workers and other people exposed to radiation through routine or accidental intake of radioactive isotopes. The quantity of the isotope intake by an individual can be estimated from the measured quantities in the bioassays using the corresponding retention or excretion function. A retention (excretion) function represents the predicted activity of a radionuclide in the body, organ, or tissue or in a 24-h excreta at a particular time after the intake. The International Commission on Radiological Protection provides these biokinetic models. We have used these functions to compute optimal experimental designs for estimating the intake quantity in workers following radionuclide inhalation or ingestion. In particular, we have considered the case where the individual is exposed to a constant intake during some periods followed by other periods without intakes, which we called multiple constant intakes. The main aim of this work is finding the best times where the bioassay samples should be obtained in order to estimate optimally the actual intake of the last period. The problem is also extended to compute the next two or more bioassays to be performed. Measurements on the same worker are modeled through a correlation structure. The outline of the problem is established for a general case and results are given for a typical case as a real example. The methodology given in the paper can be applied to other cases with multiple constant intakes, e.g. in medical treatments where the patient is exposed to successive doses during particular periods.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00477-019-01668-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1039987", 
        "issn": [
          "1436-3240", 
          "1436-3259"
        ], 
        "name": "Stochastic Environmental Research and Risk Assessment", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "33"
      }
    ], 
    "name": "Optimal bioassay time allocations for multiple accidental chronic intakes of radioactive particles", 
    "pagination": "1-10", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00477-019-01668-0"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "79711ad8a8cf8a410e336ee71f03b756432787b6512f8e19ae8810bbc5c6619d"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1113101860"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00477-019-01668-0", 
      "https://app.dimensions.ai/details/publication/pub.1113101860"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-15T08:51", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000374_0000000374/records_119738_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00477-019-01668-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00477-019-01668-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00477-019-01668-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00477-019-01668-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00477-019-01668-0'


 

This table displays all metadata directly associated to this object as RDF triples.

122 TRIPLES      21 PREDICATES      42 URIs      18 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00477-019-01668-0 schema:about anzsrc-for:11
2 anzsrc-for:1117
3 schema:author N592bc1c3dac84a5688efc7d6852f142e
4 schema:citation sg:pub.10.1007/978-1-4612-0703-0
5 sg:pub.10.1007/s00477-013-0731-0
6 sg:pub.10.1007/s00477-014-0892-5
7 sg:pub.10.1007/s10260-014-0288-1
8 sg:pub.10.1007/s11749-006-0022-x
9 sg:pub.10.1007/s11749-012-0311-5
10 https://app.dimensions.ai/details/publication/pub.1032454235
11 https://doi.org/10.1002/pst.375
12 https://doi.org/10.1002/sim.2654
13 https://doi.org/10.1016/j.chemolab.2012.01.007
14 https://doi.org/10.1080/02664760500165313
15 https://doi.org/10.1093/rpd/ncl499
16 https://doi.org/10.1097/00004032-200308000-00007
17 https://doi.org/10.1097/00004032-200510000-00005
18 https://doi.org/10.1097/01.hp.0000236783.34845.e6
19 https://doi.org/10.1214/aoms/1177729442
20 schema:datePublished 2019-03-29
21 schema:datePublishedReg 2019-03-29
22 schema:description Bioassays are applied to workers and other people exposed to radiation through routine or accidental intake of radioactive isotopes. The quantity of the isotope intake by an individual can be estimated from the measured quantities in the bioassays using the corresponding retention or excretion function. A retention (excretion) function represents the predicted activity of a radionuclide in the body, organ, or tissue or in a 24-h excreta at a particular time after the intake. The International Commission on Radiological Protection provides these biokinetic models. We have used these functions to compute optimal experimental designs for estimating the intake quantity in workers following radionuclide inhalation or ingestion. In particular, we have considered the case where the individual is exposed to a constant intake during some periods followed by other periods without intakes, which we called multiple constant intakes. The main aim of this work is finding the best times where the bioassay samples should be obtained in order to estimate optimally the actual intake of the last period. The problem is also extended to compute the next two or more bioassays to be performed. Measurements on the same worker are modeled through a correlation structure. The outline of the problem is established for a general case and results are given for a typical case as a real example. The methodology given in the paper can be applied to other cases with multiple constant intakes, e.g. in medical treatments where the patient is exposed to successive doses during particular periods.
23 schema:genre research_article
24 schema:inLanguage en
25 schema:isAccessibleForFree false
26 schema:isPartOf N43a55a675ac0437195db0a2acda9f9a0
27 Nb1aeff43119649f1b3d8421a03fd8365
28 sg:journal.1039987
29 schema:name Optimal bioassay time allocations for multiple accidental chronic intakes of radioactive particles
30 schema:pagination 1-10
31 schema:productId N685745af99ca4a589ab1229a5cc5019e
32 Na209f4deeaaa47708122e7681648b25b
33 Nc9441dcac24347bdb3a7f409cc2c3fe6
34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113101860
35 https://doi.org/10.1007/s00477-019-01668-0
36 schema:sdDatePublished 2019-04-15T08:51
37 schema:sdLicense https://scigraph.springernature.com/explorer/license/
38 schema:sdPublisher N5b2fec7923d544ce85d000cc1ed435bb
39 schema:url https://link.springer.com/10.1007%2Fs00477-019-01668-0
40 sgo:license sg:explorer/license/
41 sgo:sdDataset articles
42 rdf:type schema:ScholarlyArticle
43 N1aedd9731ecd45ee9d341783d9ac6cbb schema:affiliation https://www.grid.ac/institutes/grid.11762.33
44 schema:familyName Sánchez
45 schema:givenName J. G.
46 rdf:type schema:Person
47 N43a55a675ac0437195db0a2acda9f9a0 schema:volumeNumber 33
48 rdf:type schema:PublicationVolume
49 N592bc1c3dac84a5688efc7d6852f142e rdf:first Ndb1c1f03882d48b7bfdb34af38f066b5
50 rdf:rest Nc11092d6e86d4dc0ac352e0976652de5
51 N5b2fec7923d544ce85d000cc1ed435bb schema:name Springer Nature - SN SciGraph project
52 rdf:type schema:Organization
53 N685745af99ca4a589ab1229a5cc5019e schema:name dimensions_id
54 schema:value pub.1113101860
55 rdf:type schema:PropertyValue
56 Na209f4deeaaa47708122e7681648b25b schema:name doi
57 schema:value 10.1007/s00477-019-01668-0
58 rdf:type schema:PropertyValue
59 Nb1aeff43119649f1b3d8421a03fd8365 schema:issueNumber 3
60 rdf:type schema:PublicationIssue
61 Nc11092d6e86d4dc0ac352e0976652de5 rdf:first N1aedd9731ecd45ee9d341783d9ac6cbb
62 rdf:rest rdf:nil
63 Nc9441dcac24347bdb3a7f409cc2c3fe6 schema:name readcube_id
64 schema:value 79711ad8a8cf8a410e336ee71f03b756432787b6512f8e19ae8810bbc5c6619d
65 rdf:type schema:PropertyValue
66 Ndb1c1f03882d48b7bfdb34af38f066b5 schema:affiliation https://www.grid.ac/institutes/grid.5924.a
67 schema:familyName López-Fidalgo
68 schema:givenName J.
69 rdf:type schema:Person
70 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
71 schema:name Medical and Health Sciences
72 rdf:type schema:DefinedTerm
73 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
74 schema:name Public Health and Health Services
75 rdf:type schema:DefinedTerm
76 sg:journal.1039987 schema:issn 1436-3240
77 1436-3259
78 schema:name Stochastic Environmental Research and Risk Assessment
79 rdf:type schema:Periodical
80 sg:pub.10.1007/978-1-4612-0703-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032454235
81 https://doi.org/10.1007/978-1-4612-0703-0
82 rdf:type schema:CreativeWork
83 sg:pub.10.1007/s00477-013-0731-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031946467
84 https://doi.org/10.1007/s00477-013-0731-0
85 rdf:type schema:CreativeWork
86 sg:pub.10.1007/s00477-014-0892-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016905099
87 https://doi.org/10.1007/s00477-014-0892-5
88 rdf:type schema:CreativeWork
89 sg:pub.10.1007/s10260-014-0288-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004648677
90 https://doi.org/10.1007/s10260-014-0288-1
91 rdf:type schema:CreativeWork
92 sg:pub.10.1007/s11749-006-0022-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1017884462
93 https://doi.org/10.1007/s11749-006-0022-x
94 rdf:type schema:CreativeWork
95 sg:pub.10.1007/s11749-012-0311-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014682181
96 https://doi.org/10.1007/s11749-012-0311-5
97 rdf:type schema:CreativeWork
98 https://app.dimensions.ai/details/publication/pub.1032454235 schema:CreativeWork
99 https://doi.org/10.1002/pst.375 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034990408
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1002/sim.2654 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008116938
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1016/j.chemolab.2012.01.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049213869
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1080/02664760500165313 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007213726
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1093/rpd/ncl499 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060016702
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1097/00004032-200308000-00007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025361860
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1097/00004032-200510000-00005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040729909
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1097/01.hp.0000236783.34845.e6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044078853
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1214/aoms/1177729442 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064401683
116 rdf:type schema:CreativeWork
117 https://www.grid.ac/institutes/grid.11762.33 schema:alternateName University of Salamanca
118 schema:name Universidad de Salamanca, Plaza de los Caidos s/n, 37002, Salamanca, Spain
119 rdf:type schema:Organization
120 https://www.grid.ac/institutes/grid.5924.a schema:alternateName University of Navarra
121 schema:name Unidad de Estadística, ICS, Universidad de Navarra, Campus Universitario, 31080, Pamplona, Spain
122 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...