Multiple-point statistical simulation of the ore boundaries for a lateritic bauxite deposit View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-02-21

AUTHORS

Y. Dagasan, O. Erten, P. Renard, J. Straubhaar, E. Topal

ABSTRACT

Resource estimation of mineral deposits requires spatial modelling of orebody boundaries based on a set of exploration borehole data. Given lateritic bauxite deposits, the spacing between the boreholes is often determined based on the grade continuity. As a result, the selected drill spacing might not capture the underlying (true) lateral variability apparent in the orebody boundaries. The purpose of this study is to investigate and address the limitations imposed by such problems in lateritic metal deposits through multiple-point statistics (MPS) framework. Rather than relying on a semivariogram model, we obtain the required structural information from the footwall topographies exposed after previous mining operations. The investigation utilising the MPS was carried out using the Direct Sampling (DS) MPS algorithm. Two historical mine areas along with their mined-out surfaces and ground penetrating radar surveys were incorporated as a bivariate training image to perform the MPS simulations. In addition, geostatistical simulations using the Turning Bands method were also performed to make the comparison against the MPS results. The performances were assessed using several statistical indicators including higher-order spatial cumulants. The results have shown that the DS can satisfactorily simulate the orebody boundaries by using prior information from the previously mined-out areas. More... »

PAGES

1-14

References to SciGraph publications

  • 2013-11. Modeling Combined Geological and Grade Uncertainty: Application of Multiple-Point Simulation at the Apensu Gold Deposit, Ghana in MATHEMATICAL GEOSCIENCES
  • 2009-08. Two-dimensional Conditional Simulations Based on the Wavelet Decomposition of Training Images in MATHEMATICAL GEOSCIENCES
  • 2006-01. Filter-Based Classification of Training Image Patterns for Spatial Simulation in MATHEMATICAL GEOSCIENCES
  • 2011-04. An Improved Parallel Multiple-point Algorithm Using a List Approach in MATHEMATICAL GEOSCIENCES
  • 2018. Simulation of Orebody Geology with Multiple-Point Geostatistics—Application at Yandi Channel Iron Ore Deposit, WA, and Implications for Resource Uncertainty in ADVANCES IN APPLIED STRATEGIC MINE PLANNING
  • 2017-09. Integration of multiple soft data sets in MPS thru multinomial logistic regression: a case study of gas hydrates in STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT
  • 2015-03. Multiple-point geostatistical simulation using enriched pattern databases in STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT
  • 2019-01. Pilot Point Optimization of Mining Boundaries for Lateritic Metal Deposits: Finding the Trade-off Between Dilution and Ore Loss in NATURAL RESOURCES RESEARCH
  • 2012-06. Multiple-point geostatistical modeling based on the cross-correlation functions in COMPUTATIONAL GEOSCIENCES
  • 2010-07. Stochastic Simulation of Patterns Using Distance-Based Pattern Modeling in MATHEMATICAL GEOSCIENCES
  • 2002-01. Conditional Simulation of Complex Geological Structures Using Multiple-Point Statistics in MATHEMATICAL GEOSCIENCES
  • 2015-03. Reconstruction of porous media using multiple-point statistics with data conditioning in STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT
  • 2008-10. Optimization tools and simulation methods for designing and evaluating a mining operation in STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT
  • 2011-05. Validation Techniques for Geological Patterns Simulations Based on Variogram and Multiple-Point Statistics in MATHEMATICAL GEOSCIENCES
  • 2005. Beyond Covariance: The Advent of Multiple-Point Geostatistics in GEOSTATISTICS BANFF 2004
  • 2013-09. Spatial Prediction of Lateral Variability of a Laterite-Type Bauxite Horizon Using Ancillary Ground-Penetrating Radar Data in NATURAL RESOURCES RESEARCH
  • 2010-01. High-order Statistics of Spatial Random Fields: Exploring Spatial Cumulants for Modeling Complex Non-Gaussian and Non-linear Phenomena in MATHEMATICAL GEOSCIENCES
  • 2012. Multiple-Point Geostatistics for Modeling Lithological Domains at a Brazilian Iron Ore Deposit Using the Single Normal Equations Simulation Algorithm in GEOSTATISTICS OSLO 2012
  • 2007-02. Conditional Simulation with Patterns in MATHEMATICAL GEOSCIENCES
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00477-019-01660-8

    DOI

    http://dx.doi.org/10.1007/s00477-019-01660-8

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1112282951


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0403", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Geology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Earth Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Neuch\u00e2tel", 
              "id": "https://www.grid.ac/institutes/grid.10711.36", 
              "name": [
                "Centre for Hydrogeology and Geothermics, University of Neuch\u00e2tel, Rue Emile-Argand 11, 2000, Neuch\u00e2tel, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Dagasan", 
            "givenName": "Y.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Curtin University", 
              "id": "https://www.grid.ac/institutes/grid.1032.0", 
              "name": [
                "Department of Mining and Metallurgical Engineering, Western Australian School of Mines, Curtin University, 6430, Kalgoorlie, WA, Australia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Erten", 
            "givenName": "O.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Neuch\u00e2tel", 
              "id": "https://www.grid.ac/institutes/grid.10711.36", 
              "name": [
                "Centre for Hydrogeology and Geothermics, University of Neuch\u00e2tel, Rue Emile-Argand 11, 2000, Neuch\u00e2tel, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Renard", 
            "givenName": "P.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Neuch\u00e2tel", 
              "id": "https://www.grid.ac/institutes/grid.10711.36", 
              "name": [
                "Centre for Hydrogeology and Geothermics, University of Neuch\u00e2tel, Rue Emile-Argand 11, 2000, Neuch\u00e2tel, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Straubhaar", 
            "givenName": "J.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Curtin University", 
              "id": "https://www.grid.ac/institutes/grid.1032.0", 
              "name": [
                "Department of Mining and Metallurgical Engineering, Western Australian School of Mines, Curtin University, 6430, Kalgoorlie, WA, Australia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Topal", 
            "givenName": "E.", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s00477-014-0947-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001422516", 
              "https://doi.org/10.1007/s00477-014-0947-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00477-014-0964-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001518138", 
              "https://doi.org/10.1007/s00477-014-0964-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11053-013-9210-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002038933", 
              "https://doi.org/10.1007/s11053-013-9210-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11004-009-9235-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002039216", 
              "https://doi.org/10.1007/s11004-009-9235-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11004-009-9235-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002039216", 
              "https://doi.org/10.1007/s11004-009-9235-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1179/1743275814y.0000000046", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002827994"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cageo.2014.06.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003687808"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11004-005-9004-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004997969", 
              "https://doi.org/10.1007/s11004-005-9004-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11004-013-9500-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006082647", 
              "https://doi.org/10.1007/s11004-013-9500-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11004-011-9328-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007943895", 
              "https://doi.org/10.1007/s11004-011-9328-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11004-006-9075-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011692315", 
              "https://doi.org/10.1007/s11004-006-9075-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11004-006-9075-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011692315", 
              "https://doi.org/10.1007/s11004-006-9075-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1179/1743286314y.0000000073", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013078624"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00477-007-0182-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017347193", 
              "https://doi.org/10.1007/s00477-007-0182-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00477-007-0182-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017347193", 
              "https://doi.org/10.1007/s00477-007-0182-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/09208118908944041", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018937291"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cageo.2012.02.018", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020879476"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1014009426274", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022589901", 
              "https://doi.org/10.1023/a:1014009426274"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00477-016-1277-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026486099", 
              "https://doi.org/10.1007/s00477-016-1277-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00477-016-1277-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026486099", 
              "https://doi.org/10.1007/s00477-016-1277-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11004-010-9276-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029706895", 
              "https://doi.org/10.1007/s11004-010-9276-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11004-010-9276-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029706895", 
              "https://doi.org/10.1007/s11004-010-9276-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4020-3610-1_23", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030392852", 
              "https://doi.org/10.1007/978-1-4020-3610-1_23"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11004-009-9258-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031556172", 
              "https://doi.org/10.1007/s11004-009-9258-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11004-009-9258-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031556172", 
              "https://doi.org/10.1007/s11004-009-9258-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.enggeo.2016.09.013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033206656"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cageo.2013.01.020", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036824857"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cageo.2012.09.019", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037359446"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-94-007-4153-9_32", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041961924", 
              "https://doi.org/10.1007/978-94-007-4153-9_32"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1029/2008wr007621", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042440941"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1365-2478.1989.tb02221.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043365092"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10596-012-9287-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050574504", 
              "https://doi.org/10.1007/s10596-012-9287-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11004-011-9326-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050589529", 
              "https://doi.org/10.1007/s11004-011-9326-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.17159/2411-9717/2015/v115n1a8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1068294109"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.17159/2411-9717/2016/v116n2a10", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1068294227"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/1425829", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069488849"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.oregeorev.2017.05.011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085438498"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-69320-0_22", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100471282", 
              "https://doi.org/10.1007/978-3-319-69320-0_22"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11053-018-9380-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103675732", 
              "https://doi.org/10.1007/s11053-018-9380-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3390/min8050220", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1104143292"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.17159/2411-9717/2018/v118n2a11", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1104407168"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-02-21", 
        "datePublishedReg": "2019-02-21", 
        "description": "Resource estimation of mineral deposits requires spatial modelling of orebody boundaries based on a set of exploration borehole data. Given lateritic bauxite deposits, the spacing between the boreholes is often determined based on the grade continuity. As a result, the selected drill spacing might not capture the underlying (true) lateral variability apparent in the orebody boundaries. The purpose of this study is to investigate and address the limitations imposed by such problems in lateritic metal deposits through multiple-point statistics (MPS) framework. Rather than relying on a semivariogram model, we obtain the required structural information from the footwall topographies exposed after previous mining operations. The investigation utilising the MPS was carried out using the Direct Sampling (DS) MPS algorithm. Two historical mine areas along with their mined-out surfaces and ground penetrating radar surveys were incorporated as a bivariate training image to perform the MPS simulations. In addition, geostatistical simulations using the Turning Bands method were also performed to make the comparison against the MPS results. The performances were assessed using several statistical indicators including higher-order spatial cumulants. The results have shown that the DS can satisfactorily simulate the orebody boundaries by using prior information from the previously mined-out areas.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s00477-019-01660-8", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1039987", 
            "issn": [
              "1436-3240", 
              "1436-3259"
            ], 
            "name": "Stochastic Environmental Research and Risk Assessment", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "33"
          }
        ], 
        "name": "Multiple-point statistical simulation of the ore boundaries for a lateritic bauxite deposit", 
        "pagination": "1-14", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00477-019-01660-8"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "324168cd06aa5e375e2f030818d1657c5c7e31b9e5e4905c0eeecc70cfb99760"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1112282951"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00477-019-01660-8", 
          "https://app.dimensions.ai/details/publication/pub.1112282951"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-15T08:54", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000374_0000000374/records_119754_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs00477-019-01660-8"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00477-019-01660-8'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00477-019-01660-8'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00477-019-01660-8'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00477-019-01660-8'


     

    This table displays all metadata directly associated to this object as RDF triples.

    211 TRIPLES      21 PREDICATES      61 URIs      18 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00477-019-01660-8 schema:about anzsrc-for:04
    2 anzsrc-for:0403
    3 schema:author Nf2a32eab0cd44118bd448b212db43e56
    4 schema:citation sg:pub.10.1007/978-1-4020-3610-1_23
    5 sg:pub.10.1007/978-3-319-69320-0_22
    6 sg:pub.10.1007/978-94-007-4153-9_32
    7 sg:pub.10.1007/s00477-007-0182-6
    8 sg:pub.10.1007/s00477-014-0947-7
    9 sg:pub.10.1007/s00477-014-0964-6
    10 sg:pub.10.1007/s00477-016-1277-8
    11 sg:pub.10.1007/s10596-012-9287-1
    12 sg:pub.10.1007/s11004-005-9004-x
    13 sg:pub.10.1007/s11004-006-9075-3
    14 sg:pub.10.1007/s11004-009-9235-3
    15 sg:pub.10.1007/s11004-009-9258-9
    16 sg:pub.10.1007/s11004-010-9276-7
    17 sg:pub.10.1007/s11004-011-9326-9
    18 sg:pub.10.1007/s11004-011-9328-7
    19 sg:pub.10.1007/s11004-013-9500-3
    20 sg:pub.10.1007/s11053-013-9210-z
    21 sg:pub.10.1007/s11053-018-9380-9
    22 sg:pub.10.1023/a:1014009426274
    23 https://doi.org/10.1016/j.cageo.2012.02.018
    24 https://doi.org/10.1016/j.cageo.2012.09.019
    25 https://doi.org/10.1016/j.cageo.2013.01.020
    26 https://doi.org/10.1016/j.cageo.2014.06.001
    27 https://doi.org/10.1016/j.enggeo.2016.09.013
    28 https://doi.org/10.1016/j.oregeorev.2017.05.011
    29 https://doi.org/10.1029/2008wr007621
    30 https://doi.org/10.1080/09208118908944041
    31 https://doi.org/10.1111/j.1365-2478.1989.tb02221.x
    32 https://doi.org/10.1179/1743275814y.0000000046
    33 https://doi.org/10.1179/1743286314y.0000000073
    34 https://doi.org/10.17159/2411-9717/2015/v115n1a8
    35 https://doi.org/10.17159/2411-9717/2016/v116n2a10
    36 https://doi.org/10.17159/2411-9717/2018/v118n2a11
    37 https://doi.org/10.2307/1425829
    38 https://doi.org/10.3390/min8050220
    39 schema:datePublished 2019-02-21
    40 schema:datePublishedReg 2019-02-21
    41 schema:description Resource estimation of mineral deposits requires spatial modelling of orebody boundaries based on a set of exploration borehole data. Given lateritic bauxite deposits, the spacing between the boreholes is often determined based on the grade continuity. As a result, the selected drill spacing might not capture the underlying (true) lateral variability apparent in the orebody boundaries. The purpose of this study is to investigate and address the limitations imposed by such problems in lateritic metal deposits through multiple-point statistics (MPS) framework. Rather than relying on a semivariogram model, we obtain the required structural information from the footwall topographies exposed after previous mining operations. The investigation utilising the MPS was carried out using the Direct Sampling (DS) MPS algorithm. Two historical mine areas along with their mined-out surfaces and ground penetrating radar surveys were incorporated as a bivariate training image to perform the MPS simulations. In addition, geostatistical simulations using the Turning Bands method were also performed to make the comparison against the MPS results. The performances were assessed using several statistical indicators including higher-order spatial cumulants. The results have shown that the DS can satisfactorily simulate the orebody boundaries by using prior information from the previously mined-out areas.
    42 schema:genre research_article
    43 schema:inLanguage en
    44 schema:isAccessibleForFree false
    45 schema:isPartOf N25e15c73121342629d8511fe9d652315
    46 N70582d0d0335468eb5f45a619fc76419
    47 sg:journal.1039987
    48 schema:name Multiple-point statistical simulation of the ore boundaries for a lateritic bauxite deposit
    49 schema:pagination 1-14
    50 schema:productId N2d2130b719a040c182b67cfca0fa236f
    51 N9df268040da94918b876369cd29ea92a
    52 Nb351431d378e4d80ad2cfcc7afd351f2
    53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112282951
    54 https://doi.org/10.1007/s00477-019-01660-8
    55 schema:sdDatePublished 2019-04-15T08:54
    56 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    57 schema:sdPublisher N372e69c738e745539bdafab416537628
    58 schema:url https://link.springer.com/10.1007%2Fs00477-019-01660-8
    59 sgo:license sg:explorer/license/
    60 sgo:sdDataset articles
    61 rdf:type schema:ScholarlyArticle
    62 N06675ded1e134c07876995f019e2ba82 rdf:first N77b504530b3540edae094f0554df6078
    63 rdf:rest N9132a3626a0648f5b0d951f9df41a093
    64 N25e15c73121342629d8511fe9d652315 schema:issueNumber 3
    65 rdf:type schema:PublicationIssue
    66 N2d2130b719a040c182b67cfca0fa236f schema:name readcube_id
    67 schema:value 324168cd06aa5e375e2f030818d1657c5c7e31b9e5e4905c0eeecc70cfb99760
    68 rdf:type schema:PropertyValue
    69 N372e69c738e745539bdafab416537628 schema:name Springer Nature - SN SciGraph project
    70 rdf:type schema:Organization
    71 N5159334e903b44cf897f0376e390ea93 rdf:first N83855d72766144f69bbe7f9de3266456
    72 rdf:rest rdf:nil
    73 N5fa7129107334ae8bf51f9c1446b1b72 schema:affiliation https://www.grid.ac/institutes/grid.10711.36
    74 schema:familyName Straubhaar
    75 schema:givenName J.
    76 rdf:type schema:Person
    77 N70582d0d0335468eb5f45a619fc76419 schema:volumeNumber 33
    78 rdf:type schema:PublicationVolume
    79 N77b504530b3540edae094f0554df6078 schema:affiliation https://www.grid.ac/institutes/grid.10711.36
    80 schema:familyName Renard
    81 schema:givenName P.
    82 rdf:type schema:Person
    83 N83855d72766144f69bbe7f9de3266456 schema:affiliation https://www.grid.ac/institutes/grid.1032.0
    84 schema:familyName Topal
    85 schema:givenName E.
    86 rdf:type schema:Person
    87 N9132a3626a0648f5b0d951f9df41a093 rdf:first N5fa7129107334ae8bf51f9c1446b1b72
    88 rdf:rest N5159334e903b44cf897f0376e390ea93
    89 N9df268040da94918b876369cd29ea92a schema:name dimensions_id
    90 schema:value pub.1112282951
    91 rdf:type schema:PropertyValue
    92 N9e33945f10224ed18f48e5718219c767 schema:affiliation https://www.grid.ac/institutes/grid.10711.36
    93 schema:familyName Dagasan
    94 schema:givenName Y.
    95 rdf:type schema:Person
    96 Nadc8beb99a9f49aca596f85857391356 rdf:first Nfea1aa836b8a4eaf94a97a8b5e7c1355
    97 rdf:rest N06675ded1e134c07876995f019e2ba82
    98 Nb351431d378e4d80ad2cfcc7afd351f2 schema:name doi
    99 schema:value 10.1007/s00477-019-01660-8
    100 rdf:type schema:PropertyValue
    101 Nf2a32eab0cd44118bd448b212db43e56 rdf:first N9e33945f10224ed18f48e5718219c767
    102 rdf:rest Nadc8beb99a9f49aca596f85857391356
    103 Nfea1aa836b8a4eaf94a97a8b5e7c1355 schema:affiliation https://www.grid.ac/institutes/grid.1032.0
    104 schema:familyName Erten
    105 schema:givenName O.
    106 rdf:type schema:Person
    107 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
    108 schema:name Earth Sciences
    109 rdf:type schema:DefinedTerm
    110 anzsrc-for:0403 schema:inDefinedTermSet anzsrc-for:
    111 schema:name Geology
    112 rdf:type schema:DefinedTerm
    113 sg:journal.1039987 schema:issn 1436-3240
    114 1436-3259
    115 schema:name Stochastic Environmental Research and Risk Assessment
    116 rdf:type schema:Periodical
    117 sg:pub.10.1007/978-1-4020-3610-1_23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030392852
    118 https://doi.org/10.1007/978-1-4020-3610-1_23
    119 rdf:type schema:CreativeWork
    120 sg:pub.10.1007/978-3-319-69320-0_22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100471282
    121 https://doi.org/10.1007/978-3-319-69320-0_22
    122 rdf:type schema:CreativeWork
    123 sg:pub.10.1007/978-94-007-4153-9_32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041961924
    124 https://doi.org/10.1007/978-94-007-4153-9_32
    125 rdf:type schema:CreativeWork
    126 sg:pub.10.1007/s00477-007-0182-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017347193
    127 https://doi.org/10.1007/s00477-007-0182-6
    128 rdf:type schema:CreativeWork
    129 sg:pub.10.1007/s00477-014-0947-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001422516
    130 https://doi.org/10.1007/s00477-014-0947-7
    131 rdf:type schema:CreativeWork
    132 sg:pub.10.1007/s00477-014-0964-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001518138
    133 https://doi.org/10.1007/s00477-014-0964-6
    134 rdf:type schema:CreativeWork
    135 sg:pub.10.1007/s00477-016-1277-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026486099
    136 https://doi.org/10.1007/s00477-016-1277-8
    137 rdf:type schema:CreativeWork
    138 sg:pub.10.1007/s10596-012-9287-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050574504
    139 https://doi.org/10.1007/s10596-012-9287-1
    140 rdf:type schema:CreativeWork
    141 sg:pub.10.1007/s11004-005-9004-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1004997969
    142 https://doi.org/10.1007/s11004-005-9004-x
    143 rdf:type schema:CreativeWork
    144 sg:pub.10.1007/s11004-006-9075-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011692315
    145 https://doi.org/10.1007/s11004-006-9075-3
    146 rdf:type schema:CreativeWork
    147 sg:pub.10.1007/s11004-009-9235-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002039216
    148 https://doi.org/10.1007/s11004-009-9235-3
    149 rdf:type schema:CreativeWork
    150 sg:pub.10.1007/s11004-009-9258-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031556172
    151 https://doi.org/10.1007/s11004-009-9258-9
    152 rdf:type schema:CreativeWork
    153 sg:pub.10.1007/s11004-010-9276-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029706895
    154 https://doi.org/10.1007/s11004-010-9276-7
    155 rdf:type schema:CreativeWork
    156 sg:pub.10.1007/s11004-011-9326-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050589529
    157 https://doi.org/10.1007/s11004-011-9326-9
    158 rdf:type schema:CreativeWork
    159 sg:pub.10.1007/s11004-011-9328-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007943895
    160 https://doi.org/10.1007/s11004-011-9328-7
    161 rdf:type schema:CreativeWork
    162 sg:pub.10.1007/s11004-013-9500-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006082647
    163 https://doi.org/10.1007/s11004-013-9500-3
    164 rdf:type schema:CreativeWork
    165 sg:pub.10.1007/s11053-013-9210-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1002038933
    166 https://doi.org/10.1007/s11053-013-9210-z
    167 rdf:type schema:CreativeWork
    168 sg:pub.10.1007/s11053-018-9380-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103675732
    169 https://doi.org/10.1007/s11053-018-9380-9
    170 rdf:type schema:CreativeWork
    171 sg:pub.10.1023/a:1014009426274 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022589901
    172 https://doi.org/10.1023/a:1014009426274
    173 rdf:type schema:CreativeWork
    174 https://doi.org/10.1016/j.cageo.2012.02.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020879476
    175 rdf:type schema:CreativeWork
    176 https://doi.org/10.1016/j.cageo.2012.09.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037359446
    177 rdf:type schema:CreativeWork
    178 https://doi.org/10.1016/j.cageo.2013.01.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036824857
    179 rdf:type schema:CreativeWork
    180 https://doi.org/10.1016/j.cageo.2014.06.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003687808
    181 rdf:type schema:CreativeWork
    182 https://doi.org/10.1016/j.enggeo.2016.09.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033206656
    183 rdf:type schema:CreativeWork
    184 https://doi.org/10.1016/j.oregeorev.2017.05.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085438498
    185 rdf:type schema:CreativeWork
    186 https://doi.org/10.1029/2008wr007621 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042440941
    187 rdf:type schema:CreativeWork
    188 https://doi.org/10.1080/09208118908944041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018937291
    189 rdf:type schema:CreativeWork
    190 https://doi.org/10.1111/j.1365-2478.1989.tb02221.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1043365092
    191 rdf:type schema:CreativeWork
    192 https://doi.org/10.1179/1743275814y.0000000046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002827994
    193 rdf:type schema:CreativeWork
    194 https://doi.org/10.1179/1743286314y.0000000073 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013078624
    195 rdf:type schema:CreativeWork
    196 https://doi.org/10.17159/2411-9717/2015/v115n1a8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068294109
    197 rdf:type schema:CreativeWork
    198 https://doi.org/10.17159/2411-9717/2016/v116n2a10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068294227
    199 rdf:type schema:CreativeWork
    200 https://doi.org/10.17159/2411-9717/2018/v118n2a11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104407168
    201 rdf:type schema:CreativeWork
    202 https://doi.org/10.2307/1425829 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069488849
    203 rdf:type schema:CreativeWork
    204 https://doi.org/10.3390/min8050220 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104143292
    205 rdf:type schema:CreativeWork
    206 https://www.grid.ac/institutes/grid.1032.0 schema:alternateName Curtin University
    207 schema:name Department of Mining and Metallurgical Engineering, Western Australian School of Mines, Curtin University, 6430, Kalgoorlie, WA, Australia
    208 rdf:type schema:Organization
    209 https://www.grid.ac/institutes/grid.10711.36 schema:alternateName University of Neuchâtel
    210 schema:name Centre for Hydrogeology and Geothermics, University of Neuchâtel, Rue Emile-Argand 11, 2000, Neuchâtel, Switzerland
    211 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...