Advances in self-organizing maps for their application to compositional data View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-02-28

AUTHORS

Josep A. Martín-Fernández, Mark A. Engle, Leslie F. Ruppert, Ricardo A. Olea

ABSTRACT

A self-organizing map (SOM) is a non-linear projection of a D-dimensional data set, where the distance among observations is approximately preserved on to a lower dimensional space. The SOM arranges multivariate data based on their similarity to each other by allowing pattern recognition leading to easier interpretation of higher dimensional data. The SOM algorithm allows for selection of different map topologies, distances and parameters, which determine how the data will be organized on the map. In the particular case of compositional data (such as elemental, mineralogical, or maceral abundance), the sample space is governed by Aitchison geometry and extra steps are required prior to their SOM analysis. Following the principle of working on log-ratio coordinates, the simplicial operations and the Aitchison distance, which are appropriate elements for the SOM, are presented. With this structure developed, a SOM using Aitchison geometry is applied to properly interpret elemental data from combustion products (bottom ash, fly ash, and economizer fly ash) in a Wyoming coal-fired power plant. Results from this effort provide knowledge about the differences between the ash composition in the coal combustion process. More... »

PAGES

1-10

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00477-019-01659-1

DOI

http://dx.doi.org/10.1007/s00477-019-01659-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112460117


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Girona", 
          "id": "https://www.grid.ac/institutes/grid.5319.e", 
          "name": [
            "Department of Computer Science, Applied Mathematics and Statistics, University of Girona, Girona, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mart\u00edn-Fern\u00e1ndez", 
        "givenName": "Josep A.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The University of Texas at El Paso", 
          "id": "https://www.grid.ac/institutes/grid.267324.6", 
          "name": [
            "U.S. Geological Survey, 12201 Sunrise Valley Drive, Mail Stop 956, 20192, Reston, VA, USA", 
            "Department of Geological Sciences, University of Texas at El Paso, El Paso, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Engle", 
        "givenName": "Mark A.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "United States Geological Survey", 
          "id": "https://www.grid.ac/institutes/grid.2865.9", 
          "name": [
            "U.S. Geological Survey, 12201 Sunrise Valley Drive, Mail Stop 956, 20192, Reston, VA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ruppert", 
        "givenName": "Leslie F.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "United States Geological Survey", 
          "id": "https://www.grid.ac/institutes/grid.2865.9", 
          "name": [
            "U.S. Geological Survey, 12201 Sunrise Valley Drive, Mail Stop 956, 20192, Reston, VA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Olea", 
        "givenName": "Ricardo A.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.coal.2012.08.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008179235"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chemolab.2006.02.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014838451"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00357-012-9105-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015696532", 
          "https://doi.org/10.1007/s00357-012-9105-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ins.2015.10.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036551764"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1144/1467-7873/07-127", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037787956"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9781119976462.ch3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040925323"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chemolab.2015.02.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050642857"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11004-015-9599-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051883770", 
          "https://doi.org/10.1007/s11004-015-9599-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/es900714p", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055516310"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/es900714p", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055516310"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/72.846731", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061219420"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.17713/ajs.v45i4.142", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068443188"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.18637/jss.v021.i05", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068672315"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1217208", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069398467"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00477-017-1390-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083805663", 
          "https://doi.org/10.1007/s00477-017-1390-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00477-017-1390-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083805663", 
          "https://doi.org/10.1007/s00477-017-1390-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.wasman.2017.08.036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091478547"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.wasman.2017.08.036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091478547"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.coal.2017.10.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092246018"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11004-017-9712-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092906154", 
          "https://doi.org/10.1007/s11004-017-9712-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11004-018-9736-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103154606", 
          "https://doi.org/10.1007/s11004-018-9736-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11004-018-9736-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103154606", 
          "https://doi.org/10.1007/s11004-018-9736-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11004-018-9736-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103154606", 
          "https://doi.org/10.1007/s11004-018-9736-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11004-018-9736-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103154606", 
          "https://doi.org/10.1007/s11004-018-9736-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1106821221", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-009-4109-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109716595", 
          "https://doi.org/10.1007/978-94-009-4109-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-009-4109-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109716595", 
          "https://doi.org/10.1007/978-94-009-4109-0"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-02-28", 
    "datePublishedReg": "2019-02-28", 
    "description": "A self-organizing map (SOM) is a non-linear projection of a D-dimensional data set, where the distance among observations is approximately preserved on to a lower dimensional space. The SOM arranges multivariate data based on their similarity to each other by allowing pattern recognition leading to easier interpretation of higher dimensional data. The SOM algorithm allows for selection of different map topologies, distances and parameters, which determine how the data will be organized on the map. In the particular case of compositional data (such as elemental, mineralogical, or maceral abundance), the sample space is governed by Aitchison geometry and extra steps are required prior to their SOM analysis. Following the principle of working on log-ratio coordinates, the simplicial operations and the Aitchison distance, which are appropriate elements for the SOM, are presented. With this structure developed, a SOM using Aitchison geometry is applied to properly interpret elemental data from combustion products (bottom ash, fly ash, and economizer fly ash) in a Wyoming coal-fired power plant. Results from this effort provide knowledge about the differences between the ash composition in the coal combustion process.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00477-019-01659-1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1039987", 
        "issn": [
          "1436-3240", 
          "1436-3259"
        ], 
        "name": "Stochastic Environmental Research and Risk Assessment", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "33"
      }
    ], 
    "name": "Advances in self-organizing maps for their application to compositional data", 
    "pagination": "1-10", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00477-019-01659-1"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "5c7692ad261563f8c075ed2508ce3e59e8ac0e5f8b035fad15f171f86fab3b06"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112460117"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00477-019-01659-1", 
      "https://app.dimensions.ai/details/publication/pub.1112460117"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-15T08:54", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000374_0000000374/records_119752_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00477-019-01659-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00477-019-01659-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00477-019-01659-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00477-019-01659-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00477-019-01659-1'


 

This table displays all metadata directly associated to this object as RDF triples.

150 TRIPLES      21 PREDICATES      46 URIs      18 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00477-019-01659-1 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N7080a114bf234ee1a015829bd9681118
4 schema:citation sg:pub.10.1007/978-94-009-4109-0
5 sg:pub.10.1007/s00357-012-9105-4
6 sg:pub.10.1007/s00477-017-1390-3
7 sg:pub.10.1007/s11004-015-9599-5
8 sg:pub.10.1007/s11004-017-9712-z
9 sg:pub.10.1007/s11004-018-9736-z
10 https://app.dimensions.ai/details/publication/pub.1106821221
11 https://doi.org/10.1002/9781119976462.ch3
12 https://doi.org/10.1016/j.chemolab.2006.02.003
13 https://doi.org/10.1016/j.chemolab.2015.02.019
14 https://doi.org/10.1016/j.coal.2012.08.010
15 https://doi.org/10.1016/j.coal.2017.10.002
16 https://doi.org/10.1016/j.ins.2015.10.013
17 https://doi.org/10.1016/j.wasman.2017.08.036
18 https://doi.org/10.1021/es900714p
19 https://doi.org/10.1109/72.846731
20 https://doi.org/10.1144/1467-7873/07-127
21 https://doi.org/10.17713/ajs.v45i4.142
22 https://doi.org/10.18637/jss.v021.i05
23 https://doi.org/10.2307/1217208
24 schema:datePublished 2019-02-28
25 schema:datePublishedReg 2019-02-28
26 schema:description A self-organizing map (SOM) is a non-linear projection of a D-dimensional data set, where the distance among observations is approximately preserved on to a lower dimensional space. The SOM arranges multivariate data based on their similarity to each other by allowing pattern recognition leading to easier interpretation of higher dimensional data. The SOM algorithm allows for selection of different map topologies, distances and parameters, which determine how the data will be organized on the map. In the particular case of compositional data (such as elemental, mineralogical, or maceral abundance), the sample space is governed by Aitchison geometry and extra steps are required prior to their SOM analysis. Following the principle of working on log-ratio coordinates, the simplicial operations and the Aitchison distance, which are appropriate elements for the SOM, are presented. With this structure developed, a SOM using Aitchison geometry is applied to properly interpret elemental data from combustion products (bottom ash, fly ash, and economizer fly ash) in a Wyoming coal-fired power plant. Results from this effort provide knowledge about the differences between the ash composition in the coal combustion process.
27 schema:genre research_article
28 schema:inLanguage en
29 schema:isAccessibleForFree false
30 schema:isPartOf N5cdf94a829444fc1ac08e792d5b55ff4
31 Nbeccea5c5b45440b92d6032cb3002bee
32 sg:journal.1039987
33 schema:name Advances in self-organizing maps for their application to compositional data
34 schema:pagination 1-10
35 schema:productId N93e24df5a6eb4e3d83e5dc52526dc956
36 Nfae6a14aef6540149c8523d481b2f0ca
37 Nfee16c5612094186b5f461e7795db1e0
38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112460117
39 https://doi.org/10.1007/s00477-019-01659-1
40 schema:sdDatePublished 2019-04-15T08:54
41 schema:sdLicense https://scigraph.springernature.com/explorer/license/
42 schema:sdPublisher N2b3ce62e3efc4ad8a50959d79d6a8e30
43 schema:url https://link.springer.com/10.1007%2Fs00477-019-01659-1
44 sgo:license sg:explorer/license/
45 sgo:sdDataset articles
46 rdf:type schema:ScholarlyArticle
47 N29f62cb07d784b39be8d80a856523125 rdf:first N92c72ff3310745759e05ee2c467be061
48 rdf:rest N79c859d9442b4be2bb9cb7e9d6a519f6
49 N2b3ce62e3efc4ad8a50959d79d6a8e30 schema:name Springer Nature - SN SciGraph project
50 rdf:type schema:Organization
51 N5cdf94a829444fc1ac08e792d5b55ff4 schema:issueNumber 3
52 rdf:type schema:PublicationIssue
53 N7080a114bf234ee1a015829bd9681118 rdf:first Naa05906f7f6b47c4b8df12f15338b23a
54 rdf:rest Ncbb755105f32434588cae3d8c96ac921
55 N79c859d9442b4be2bb9cb7e9d6a519f6 rdf:first N8559cadcbc234e25993ee128c79c242c
56 rdf:rest rdf:nil
57 N8559cadcbc234e25993ee128c79c242c schema:affiliation https://www.grid.ac/institutes/grid.2865.9
58 schema:familyName Olea
59 schema:givenName Ricardo A.
60 rdf:type schema:Person
61 N8b7285c88a7e4644a802c64a54b8a5eb schema:affiliation https://www.grid.ac/institutes/grid.267324.6
62 schema:familyName Engle
63 schema:givenName Mark A.
64 rdf:type schema:Person
65 N92c72ff3310745759e05ee2c467be061 schema:affiliation https://www.grid.ac/institutes/grid.2865.9
66 schema:familyName Ruppert
67 schema:givenName Leslie F.
68 rdf:type schema:Person
69 N93e24df5a6eb4e3d83e5dc52526dc956 schema:name readcube_id
70 schema:value 5c7692ad261563f8c075ed2508ce3e59e8ac0e5f8b035fad15f171f86fab3b06
71 rdf:type schema:PropertyValue
72 Naa05906f7f6b47c4b8df12f15338b23a schema:affiliation https://www.grid.ac/institutes/grid.5319.e
73 schema:familyName Martín-Fernández
74 schema:givenName Josep A.
75 rdf:type schema:Person
76 Nbeccea5c5b45440b92d6032cb3002bee schema:volumeNumber 33
77 rdf:type schema:PublicationVolume
78 Ncbb755105f32434588cae3d8c96ac921 rdf:first N8b7285c88a7e4644a802c64a54b8a5eb
79 rdf:rest N29f62cb07d784b39be8d80a856523125
80 Nfae6a14aef6540149c8523d481b2f0ca schema:name dimensions_id
81 schema:value pub.1112460117
82 rdf:type schema:PropertyValue
83 Nfee16c5612094186b5f461e7795db1e0 schema:name doi
84 schema:value 10.1007/s00477-019-01659-1
85 rdf:type schema:PropertyValue
86 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
87 schema:name Information and Computing Sciences
88 rdf:type schema:DefinedTerm
89 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
90 schema:name Artificial Intelligence and Image Processing
91 rdf:type schema:DefinedTerm
92 sg:journal.1039987 schema:issn 1436-3240
93 1436-3259
94 schema:name Stochastic Environmental Research and Risk Assessment
95 rdf:type schema:Periodical
96 sg:pub.10.1007/978-94-009-4109-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109716595
97 https://doi.org/10.1007/978-94-009-4109-0
98 rdf:type schema:CreativeWork
99 sg:pub.10.1007/s00357-012-9105-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015696532
100 https://doi.org/10.1007/s00357-012-9105-4
101 rdf:type schema:CreativeWork
102 sg:pub.10.1007/s00477-017-1390-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083805663
103 https://doi.org/10.1007/s00477-017-1390-3
104 rdf:type schema:CreativeWork
105 sg:pub.10.1007/s11004-015-9599-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051883770
106 https://doi.org/10.1007/s11004-015-9599-5
107 rdf:type schema:CreativeWork
108 sg:pub.10.1007/s11004-017-9712-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1092906154
109 https://doi.org/10.1007/s11004-017-9712-z
110 rdf:type schema:CreativeWork
111 sg:pub.10.1007/s11004-018-9736-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1103154606
112 https://doi.org/10.1007/s11004-018-9736-z
113 rdf:type schema:CreativeWork
114 https://app.dimensions.ai/details/publication/pub.1106821221 schema:CreativeWork
115 https://doi.org/10.1002/9781119976462.ch3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040925323
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/j.chemolab.2006.02.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014838451
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/j.chemolab.2015.02.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050642857
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/j.coal.2012.08.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008179235
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/j.coal.2017.10.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092246018
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/j.ins.2015.10.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036551764
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/j.wasman.2017.08.036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091478547
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1021/es900714p schema:sameAs https://app.dimensions.ai/details/publication/pub.1055516310
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1109/72.846731 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061219420
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1144/1467-7873/07-127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037787956
134 rdf:type schema:CreativeWork
135 https://doi.org/10.17713/ajs.v45i4.142 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068443188
136 rdf:type schema:CreativeWork
137 https://doi.org/10.18637/jss.v021.i05 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068672315
138 rdf:type schema:CreativeWork
139 https://doi.org/10.2307/1217208 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069398467
140 rdf:type schema:CreativeWork
141 https://www.grid.ac/institutes/grid.267324.6 schema:alternateName The University of Texas at El Paso
142 schema:name Department of Geological Sciences, University of Texas at El Paso, El Paso, TX, USA
143 U.S. Geological Survey, 12201 Sunrise Valley Drive, Mail Stop 956, 20192, Reston, VA, USA
144 rdf:type schema:Organization
145 https://www.grid.ac/institutes/grid.2865.9 schema:alternateName United States Geological Survey
146 schema:name U.S. Geological Survey, 12201 Sunrise Valley Drive, Mail Stop 956, 20192, Reston, VA, USA
147 rdf:type schema:Organization
148 https://www.grid.ac/institutes/grid.5319.e schema:alternateName University of Girona
149 schema:name Department of Computer Science, Applied Mathematics and Statistics, University of Girona, Girona, Spain
150 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...