Predicting pollution incidents through semiparametric quantile regression models View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-02-15

AUTHORS

J. Roca-Pardiñas, C. Ordóñez

ABSTRACT

In this paper we present a method to forecast pollution episodes using measurements of the pollutant concentration along time. Specifically, we use a backfitting algorithm with local polynomial kernel smoothers to estimate a semiparametric additive quantile regression model. We also propose a statistical hypothesis test to determine critical values, i.e., the values of the concentration that are significant to forecast the pollution episodes. This test is based on a wild bootstrap approach modified to suit asymmetric loss functions, as occurs in quantile regression. The validity of the method was checked with both simulated and real data, the latter from SO2 emissions from a coal-fired power station located in Northern Spain. More... »

PAGES

1-13

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00477-019-01653-7

DOI

http://dx.doi.org/10.1007/s00477-019-01653-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112158413


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Vigo", 
          "id": "https://www.grid.ac/institutes/grid.6312.6", 
          "name": [
            "Department of Statistics and Operations Research, University of Vigo, 36310, Vigo, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Roca-Pardi\u00f1as", 
        "givenName": "J.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Oviedo", 
          "id": "https://www.grid.ac/institutes/grid.10863.3c", 
          "name": [
            "Department of Mining Exploitation and Prospecting, University of Oviedo, Oviedo, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ord\u00f3\u00f1ez", 
        "givenName": "C.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/env.2384", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000840780"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.atmosenv.2013.05.075", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002330454"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jeem.2003.06.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003382372"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jeem.2003.06.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003382372"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/1467-9884.00363", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005286708"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.csda.2008.05.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006537994"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1890/1540-9295(2003)001[0412:agitqr]2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007573012"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0266466606060300", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008782874"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1467-9469.2004.03_035.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014151753"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00477-016-1252-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021768132", 
          "https://doi.org/10.1007/s00477-016-1252-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00477-016-1252-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021768132", 
          "https://doi.org/10.1007/s00477-016-1252-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/10-aos808", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029412783"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/03014468900000532", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033825110"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jkss.2014.01.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038372225"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.atmosenv.2012.03.069", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042059148"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1289/ehp.1307824", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046340557"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.1995.10476630", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058304913"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.1998.10474104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058305475"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biomet/81.4.673", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059420515"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biomet/asr052", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059421932"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1198/016214501753382273", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064197908"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1198/016214505000000583", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064198390"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1198/jasa.2010.ap09237", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064200545"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/10-bjps131", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064391594"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aos/1176347757", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064408447"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aos/1176349025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064408762"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1913643", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069640867"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4310/sii.2017.v10.n2.a9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072464467"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5705/ss.2010.199", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073080289"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10651-017-0374-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085439379", 
          "https://doi.org/10.1007/s10651-017-0374-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10651-017-0374-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085439379", 
          "https://doi.org/10.1007/s10651-017-0374-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4172/2155-6180.1000354", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090827182"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511754098", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098669300"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-02-15", 
    "datePublishedReg": "2019-02-15", 
    "description": "In this paper we present a method to forecast pollution episodes using measurements of the pollutant concentration along time. Specifically, we use a backfitting algorithm with local polynomial kernel smoothers to estimate a semiparametric additive quantile regression model. We also propose a statistical hypothesis test to determine critical values, i.e., the values of the concentration that are significant to forecast the pollution episodes. This test is based on a wild bootstrap approach modified to suit asymmetric loss functions, as occurs in quantile regression. The validity of the method was checked with both simulated and real data, the latter from SO2 emissions from a coal-fired power station located in Northern Spain.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00477-019-01653-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1039987", 
        "issn": [
          "1436-3240", 
          "1436-3259"
        ], 
        "name": "Stochastic Environmental Research and Risk Assessment", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "33"
      }
    ], 
    "name": "Predicting pollution incidents through semiparametric quantile regression models", 
    "pagination": "1-13", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00477-019-01653-7"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "3a002af9f967434958b4f724548c3deea492750ec059b742e8c1df558acc93b1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112158413"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00477-019-01653-7", 
      "https://app.dimensions.ai/details/publication/pub.1112158413"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-15T08:51", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000374_0000000374/records_119738_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00477-019-01653-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00477-019-01653-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00477-019-01653-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00477-019-01653-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00477-019-01653-7'


 

This table displays all metadata directly associated to this object as RDF triples.

161 TRIPLES      21 PREDICATES      56 URIs      18 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00477-019-01653-7 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N413d1a587da8409cb0c2ec4e4ca9dcfd
4 schema:citation sg:pub.10.1007/s00477-016-1252-4
5 sg:pub.10.1007/s10651-017-0374-2
6 https://doi.org/10.1002/env.2384
7 https://doi.org/10.1016/j.atmosenv.2012.03.069
8 https://doi.org/10.1016/j.atmosenv.2013.05.075
9 https://doi.org/10.1016/j.csda.2008.05.013
10 https://doi.org/10.1016/j.jeem.2003.06.003
11 https://doi.org/10.1016/j.jkss.2014.01.002
12 https://doi.org/10.1017/cbo9780511754098
13 https://doi.org/10.1017/s0266466606060300
14 https://doi.org/10.1080/01621459.1995.10476630
15 https://doi.org/10.1080/01621459.1998.10474104
16 https://doi.org/10.1080/03014468900000532
17 https://doi.org/10.1093/biomet/81.4.673
18 https://doi.org/10.1093/biomet/asr052
19 https://doi.org/10.1111/1467-9884.00363
20 https://doi.org/10.1111/j.1467-9469.2004.03_035.x
21 https://doi.org/10.1198/016214501753382273
22 https://doi.org/10.1198/016214505000000583
23 https://doi.org/10.1198/jasa.2010.ap09237
24 https://doi.org/10.1214/10-aos808
25 https://doi.org/10.1214/10-bjps131
26 https://doi.org/10.1214/aos/1176347757
27 https://doi.org/10.1214/aos/1176349025
28 https://doi.org/10.1289/ehp.1307824
29 https://doi.org/10.1890/1540-9295(2003)001[0412:agitqr]2.0.co;2
30 https://doi.org/10.2307/1913643
31 https://doi.org/10.4172/2155-6180.1000354
32 https://doi.org/10.4310/sii.2017.v10.n2.a9
33 https://doi.org/10.5705/ss.2010.199
34 schema:datePublished 2019-02-15
35 schema:datePublishedReg 2019-02-15
36 schema:description In this paper we present a method to forecast pollution episodes using measurements of the pollutant concentration along time. Specifically, we use a backfitting algorithm with local polynomial kernel smoothers to estimate a semiparametric additive quantile regression model. We also propose a statistical hypothesis test to determine critical values, i.e., the values of the concentration that are significant to forecast the pollution episodes. This test is based on a wild bootstrap approach modified to suit asymmetric loss functions, as occurs in quantile regression. The validity of the method was checked with both simulated and real data, the latter from SO2 emissions from a coal-fired power station located in Northern Spain.
37 schema:genre research_article
38 schema:inLanguage en
39 schema:isAccessibleForFree false
40 schema:isPartOf N653fe3f6dc9242e5b4e1c313ac52db48
41 Nccf98f7f353f4133a4a2236fd7bf5b22
42 sg:journal.1039987
43 schema:name Predicting pollution incidents through semiparametric quantile regression models
44 schema:pagination 1-13
45 schema:productId N38b1f05e902945f888c60096f0a72d25
46 N5e5540a9a6f345dca37bb163379861c4
47 Nbfc35a7a37f54e4e9a729f2b9ce6538c
48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112158413
49 https://doi.org/10.1007/s00477-019-01653-7
50 schema:sdDatePublished 2019-04-15T08:51
51 schema:sdLicense https://scigraph.springernature.com/explorer/license/
52 schema:sdPublisher N0008a58c8bca47de8e6211a4b2faabd1
53 schema:url https://link.springer.com/10.1007%2Fs00477-019-01653-7
54 sgo:license sg:explorer/license/
55 sgo:sdDataset articles
56 rdf:type schema:ScholarlyArticle
57 N0008a58c8bca47de8e6211a4b2faabd1 schema:name Springer Nature - SN SciGraph project
58 rdf:type schema:Organization
59 N38b1f05e902945f888c60096f0a72d25 schema:name doi
60 schema:value 10.1007/s00477-019-01653-7
61 rdf:type schema:PropertyValue
62 N413d1a587da8409cb0c2ec4e4ca9dcfd rdf:first N9584a8dee9ae463db2002e363e4bb93c
63 rdf:rest N6395231cb3d849ef971deea544f5f52c
64 N5e5540a9a6f345dca37bb163379861c4 schema:name readcube_id
65 schema:value 3a002af9f967434958b4f724548c3deea492750ec059b742e8c1df558acc93b1
66 rdf:type schema:PropertyValue
67 N6395231cb3d849ef971deea544f5f52c rdf:first Nee29e39805194340906284addb6a42b3
68 rdf:rest rdf:nil
69 N653fe3f6dc9242e5b4e1c313ac52db48 schema:volumeNumber 33
70 rdf:type schema:PublicationVolume
71 N9584a8dee9ae463db2002e363e4bb93c schema:affiliation https://www.grid.ac/institutes/grid.6312.6
72 schema:familyName Roca-Pardiñas
73 schema:givenName J.
74 rdf:type schema:Person
75 Nbfc35a7a37f54e4e9a729f2b9ce6538c schema:name dimensions_id
76 schema:value pub.1112158413
77 rdf:type schema:PropertyValue
78 Nccf98f7f353f4133a4a2236fd7bf5b22 schema:issueNumber 3
79 rdf:type schema:PublicationIssue
80 Nee29e39805194340906284addb6a42b3 schema:affiliation https://www.grid.ac/institutes/grid.10863.3c
81 schema:familyName Ordóñez
82 schema:givenName C.
83 rdf:type schema:Person
84 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
85 schema:name Mathematical Sciences
86 rdf:type schema:DefinedTerm
87 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
88 schema:name Statistics
89 rdf:type schema:DefinedTerm
90 sg:journal.1039987 schema:issn 1436-3240
91 1436-3259
92 schema:name Stochastic Environmental Research and Risk Assessment
93 rdf:type schema:Periodical
94 sg:pub.10.1007/s00477-016-1252-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021768132
95 https://doi.org/10.1007/s00477-016-1252-4
96 rdf:type schema:CreativeWork
97 sg:pub.10.1007/s10651-017-0374-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085439379
98 https://doi.org/10.1007/s10651-017-0374-2
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1002/env.2384 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000840780
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1016/j.atmosenv.2012.03.069 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042059148
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1016/j.atmosenv.2013.05.075 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002330454
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1016/j.csda.2008.05.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006537994
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1016/j.jeem.2003.06.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003382372
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1016/j.jkss.2014.01.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038372225
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1017/cbo9780511754098 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098669300
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1017/s0266466606060300 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008782874
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1080/01621459.1995.10476630 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058304913
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1080/01621459.1998.10474104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058305475
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1080/03014468900000532 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033825110
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1093/biomet/81.4.673 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059420515
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1093/biomet/asr052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059421932
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1111/1467-9884.00363 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005286708
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1111/j.1467-9469.2004.03_035.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1014151753
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1198/016214501753382273 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064197908
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1198/016214505000000583 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064198390
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1198/jasa.2010.ap09237 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064200545
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1214/10-aos808 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029412783
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1214/10-bjps131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064391594
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1214/aos/1176347757 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064408447
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1214/aos/1176349025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064408762
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1289/ehp.1307824 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046340557
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1890/1540-9295(2003)001[0412:agitqr]2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007573012
147 rdf:type schema:CreativeWork
148 https://doi.org/10.2307/1913643 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069640867
149 rdf:type schema:CreativeWork
150 https://doi.org/10.4172/2155-6180.1000354 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090827182
151 rdf:type schema:CreativeWork
152 https://doi.org/10.4310/sii.2017.v10.n2.a9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072464467
153 rdf:type schema:CreativeWork
154 https://doi.org/10.5705/ss.2010.199 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073080289
155 rdf:type schema:CreativeWork
156 https://www.grid.ac/institutes/grid.10863.3c schema:alternateName University of Oviedo
157 schema:name Department of Mining Exploitation and Prospecting, University of Oviedo, Oviedo, Spain
158 rdf:type schema:Organization
159 https://www.grid.ac/institutes/grid.6312.6 schema:alternateName University of Vigo
160 schema:name Department of Statistics and Operations Research, University of Vigo, 36310, Vigo, Spain
161 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...