Ontology type: schema:ScholarlyArticle
2018-04-09
AUTHORSXiaomeng Li, Liangsheng Shi, Yuanyuan Zha, Yakun Wang, Shun Hu
ABSTRACTAccurate estimates of soil moisture and soil hydraulic parameters via data assimilation largely depend on the quality of the model structure, input data and observations. Often, however, all of this information is subject to uncertainty under real circumstances. This real-case study seeks to understand the effects of different uncertainty sources and observation scales on data assimilation performance. Ensemble Kalman filter method based on the soil water-flow model, a sub-module of soil–water–atmosphere–plant model, is established to simultaneously estimate the model states and parameters. The soil hydraulic parameters are extensively measured or calibrated to examine the parameter estimation accuracy. Furthermore, considering the high spatial and temporal variability of soil moisture observation in the field-scale problem, an analysis of spatiotemporal characteristics is combined with data assimilation. Results indicated that simultaneously considering parameter and initial conditions uncertainty leads to a better soil moisture and parameter estimation than that ignoring initial uncertainty in realistic practice. Unlike the other error sources, an inadequate description to the meteorological forcing has a negative influence on surface soil moisture estimation, which might be attributed to the persistent disturbances of evaporation uncertainty and the lack of observations at shallow soil depth. Moreover, a prior knowledge of spatiotemporal features of soil moisture observation is beneficial to efficiently improve data assimilation performance. It is possible to implement field-scale data assimilation with a few representative points, instead of using the spatial average of all observations at a high cost. The assimilation results highlight the possibly positive outcomes of accounting for the multi-source of uncertainties and emphasize the significant importance of characterizing the spatial–temporal feature of soil moisture for a field-scale application. More... »
PAGES2477-2493
http://scigraph.springernature.com/pub.10.1007/s00477-018-1541-1
DOIhttp://dx.doi.org/10.1007/s00477-018-1541-1
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1103191079
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Engineering",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0907",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Environmental Engineering",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "State Key Laboratory of Water Resources and Hydropower Engineering Sciences, Wuhan University, 430072, Wuhan, Hubei, China",
"id": "http://www.grid.ac/institutes/grid.49470.3e",
"name": [
"State Key Laboratory of Water Resources and Hydropower Engineering Sciences, Wuhan University, 430072, Wuhan, Hubei, China"
],
"type": "Organization"
},
"familyName": "Li",
"givenName": "Xiaomeng",
"id": "sg:person.012533220152.41",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012533220152.41"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "State Key Laboratory of Water Resources and Hydropower Engineering Sciences, Wuhan University, 430072, Wuhan, Hubei, China",
"id": "http://www.grid.ac/institutes/grid.49470.3e",
"name": [
"State Key Laboratory of Water Resources and Hydropower Engineering Sciences, Wuhan University, 430072, Wuhan, Hubei, China"
],
"type": "Organization"
},
"familyName": "Shi",
"givenName": "Liangsheng",
"id": "sg:person.013753244525.37",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013753244525.37"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "State Key Laboratory of Water Resources and Hydropower Engineering Sciences, Wuhan University, 430072, Wuhan, Hubei, China",
"id": "http://www.grid.ac/institutes/grid.49470.3e",
"name": [
"State Key Laboratory of Water Resources and Hydropower Engineering Sciences, Wuhan University, 430072, Wuhan, Hubei, China"
],
"type": "Organization"
},
"familyName": "Zha",
"givenName": "Yuanyuan",
"id": "sg:person.01041615256.23",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01041615256.23"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "State Key Laboratory of Water Resources and Hydropower Engineering Sciences, Wuhan University, 430072, Wuhan, Hubei, China",
"id": "http://www.grid.ac/institutes/grid.49470.3e",
"name": [
"State Key Laboratory of Water Resources and Hydropower Engineering Sciences, Wuhan University, 430072, Wuhan, Hubei, China"
],
"type": "Organization"
},
"familyName": "Wang",
"givenName": "Yakun",
"id": "sg:person.07445552050.14",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07445552050.14"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "State Key Laboratory of Water Resources and Hydropower Engineering Sciences, Wuhan University, 430072, Wuhan, Hubei, China",
"id": "http://www.grid.ac/institutes/grid.49470.3e",
"name": [
"State Key Laboratory of Water Resources and Hydropower Engineering Sciences, Wuhan University, 430072, Wuhan, Hubei, China"
],
"type": "Organization"
},
"familyName": "Hu",
"givenName": "Shun",
"id": "sg:person.014342721455.73",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014342721455.73"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/bf02918692",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1036359509",
"https://doi.org/10.1007/bf02918692"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00477-011-0534-0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1007052251",
"https://doi.org/10.1007/s00477-011-0534-0"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00477-012-0682-x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1048198658",
"https://doi.org/10.1007/s00477-012-0682-x"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s11431-009-0353-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1047395108",
"https://doi.org/10.1007/s11431-009-0353-4"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10236-003-0036-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1053511041",
"https://doi.org/10.1007/s10236-003-0036-9"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00477-010-0400-5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1041561579",
"https://doi.org/10.1007/s00477-010-0400-5"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf00190521",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1021268902",
"https://doi.org/10.1007/bf00190521"
],
"type": "CreativeWork"
}
],
"datePublished": "2018-04-09",
"datePublishedReg": "2018-04-09",
"description": "Accurate estimates of soil moisture and soil hydraulic parameters via data assimilation largely depend on the quality of the model structure, input data and observations. Often, however, all of this information is subject to uncertainty under real circumstances. This real-case study seeks to understand the effects of different uncertainty sources and observation scales on data assimilation performance. Ensemble Kalman filter method based on the soil water-flow model, a sub-module of soil\u2013water\u2013atmosphere\u2013plant model, is established to simultaneously estimate the model states and parameters. The soil hydraulic parameters are extensively measured or calibrated to examine the parameter estimation accuracy. Furthermore, considering the high spatial and temporal variability of soil moisture observation in the field-scale problem, an analysis of spatiotemporal characteristics is combined with data assimilation. Results indicated that simultaneously considering parameter and initial conditions uncertainty leads to a better soil moisture and parameter estimation than that ignoring initial uncertainty in realistic practice. Unlike the other error sources, an inadequate description to the meteorological forcing has a negative influence on surface soil moisture estimation, which might be attributed to the persistent disturbances of evaporation uncertainty and the lack of observations at shallow soil depth. Moreover, a prior knowledge of spatiotemporal features of soil moisture observation is beneficial to efficiently improve data assimilation performance. It is possible to implement field-scale data assimilation with a few representative points, instead of using the spatial average of all observations at a high cost. The assimilation results highlight the possibly positive outcomes of accounting for the multi-source of uncertainties and emphasize the significant importance of characterizing the spatial\u2013temporal feature of soil moisture for a field-scale application.",
"genre": "article",
"id": "sg:pub.10.1007/s00477-018-1541-1",
"inLanguage": "en",
"isAccessibleForFree": false,
"isFundedItemOf": [
{
"id": "sg:grant.8264501",
"type": "MonetaryGrant"
},
{
"id": "sg:grant.8261368",
"type": "MonetaryGrant"
}
],
"isPartOf": [
{
"id": "sg:journal.1039987",
"issn": [
"1436-3240",
"1436-3259"
],
"name": "Stochastic Environmental Research and Risk Assessment",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "9",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "32"
}
],
"keywords": [
"soil moisture observations",
"data assimilation performance",
"data assimilation",
"soil hydraulic parameters",
"soil moisture",
"moisture observations",
"assimilation performance",
"surface soil moisture estimation",
"hydraulic parameters",
"soil moisture estimation",
"field-scale problems",
"Atmosphere\u2013Plant (SWAP) model",
"field-scale applications",
"initial condition uncertainty",
"lack of observations",
"soil water flow model",
"ensemble Kalman filter method",
"water flow model",
"uncertainty sources",
"shallow soil depth",
"soil water flow",
"Kalman filter method",
"real case study",
"parameter estimation accuracy",
"different uncertainty sources",
"moisture estimation",
"meteorological forcing",
"temporal variability",
"condition uncertainty",
"multiple uncertainty sources",
"better soil moisture",
"water flow",
"spatial-temporal features",
"error sources",
"spatiotemporal characteristics",
"model states",
"estimation accuracy",
"assimilation",
"spatial average",
"persistent disturbances",
"moisture",
"soil depth",
"filter method",
"parameter estimation",
"initial uncertainty",
"uncertainty",
"input data",
"significant importance",
"model structure",
"accurate estimates",
"parameters",
"forcing",
"high cost",
"representative points",
"source",
"performance",
"spatiotemporal features",
"real circumstances",
"estimation",
"depth",
"variability",
"case study",
"flow",
"Observation Scale",
"prior knowledge",
"estimates",
"model",
"features",
"applications",
"scale",
"accuracy",
"cost",
"negative influence",
"structure",
"characteristics",
"influence",
"average",
"observations",
"disturbances",
"method",
"data",
"inadequate description",
"results",
"problem",
"point",
"effect",
"quality",
"realistic practice",
"importance",
"analysis",
"description",
"study",
"lack",
"state",
"information",
"knowledge",
"circumstances",
"practice",
"positive outcomes",
"outcomes"
],
"name": "Data assimilation of soil water flow by considering multiple uncertainty sources and spatial\u2013temporal features: a field-scale real case study",
"pagination": "2477-2493",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1103191079"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s00477-018-1541-1"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s00477-018-1541-1",
"https://app.dimensions.ai/details/publication/pub.1103191079"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-10T10:21",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_766.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s00477-018-1541-1"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00477-018-1541-1'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00477-018-1541-1'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00477-018-1541-1'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00477-018-1541-1'
This table displays all metadata directly associated to this object as RDF triples.
218 TRIPLES
22 PREDICATES
132 URIs
117 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/s00477-018-1541-1 | schema:about | anzsrc-for:09 |
2 | ″ | ″ | anzsrc-for:0907 |
3 | ″ | schema:author | N8a84263be6e34cc7a964fd7183fc0a01 |
4 | ″ | schema:citation | sg:pub.10.1007/bf00190521 |
5 | ″ | ″ | sg:pub.10.1007/bf02918692 |
6 | ″ | ″ | sg:pub.10.1007/s00477-010-0400-5 |
7 | ″ | ″ | sg:pub.10.1007/s00477-011-0534-0 |
8 | ″ | ″ | sg:pub.10.1007/s00477-012-0682-x |
9 | ″ | ″ | sg:pub.10.1007/s10236-003-0036-9 |
10 | ″ | ″ | sg:pub.10.1007/s11431-009-0353-4 |
11 | ″ | schema:datePublished | 2018-04-09 |
12 | ″ | schema:datePublishedReg | 2018-04-09 |
13 | ″ | schema:description | Accurate estimates of soil moisture and soil hydraulic parameters via data assimilation largely depend on the quality of the model structure, input data and observations. Often, however, all of this information is subject to uncertainty under real circumstances. This real-case study seeks to understand the effects of different uncertainty sources and observation scales on data assimilation performance. Ensemble Kalman filter method based on the soil water-flow model, a sub-module of soil–water–atmosphere–plant model, is established to simultaneously estimate the model states and parameters. The soil hydraulic parameters are extensively measured or calibrated to examine the parameter estimation accuracy. Furthermore, considering the high spatial and temporal variability of soil moisture observation in the field-scale problem, an analysis of spatiotemporal characteristics is combined with data assimilation. Results indicated that simultaneously considering parameter and initial conditions uncertainty leads to a better soil moisture and parameter estimation than that ignoring initial uncertainty in realistic practice. Unlike the other error sources, an inadequate description to the meteorological forcing has a negative influence on surface soil moisture estimation, which might be attributed to the persistent disturbances of evaporation uncertainty and the lack of observations at shallow soil depth. Moreover, a prior knowledge of spatiotemporal features of soil moisture observation is beneficial to efficiently improve data assimilation performance. It is possible to implement field-scale data assimilation with a few representative points, instead of using the spatial average of all observations at a high cost. The assimilation results highlight the possibly positive outcomes of accounting for the multi-source of uncertainties and emphasize the significant importance of characterizing the spatial–temporal feature of soil moisture for a field-scale application. |
14 | ″ | schema:genre | article |
15 | ″ | schema:inLanguage | en |
16 | ″ | schema:isAccessibleForFree | false |
17 | ″ | schema:isPartOf | N30a591323c8d4adb85ae0b2af9b9ef80 |
18 | ″ | ″ | N57a3f16f77804d998555ceffb0faa496 |
19 | ″ | ″ | sg:journal.1039987 |
20 | ″ | schema:keywords | Atmosphere–Plant (SWAP) model |
21 | ″ | ″ | Kalman filter method |
22 | ″ | ″ | Observation Scale |
23 | ″ | ″ | accuracy |
24 | ″ | ″ | accurate estimates |
25 | ″ | ″ | analysis |
26 | ″ | ″ | applications |
27 | ″ | ″ | assimilation |
28 | ″ | ″ | assimilation performance |
29 | ″ | ″ | average |
30 | ″ | ″ | better soil moisture |
31 | ″ | ″ | case study |
32 | ″ | ″ | characteristics |
33 | ″ | ″ | circumstances |
34 | ″ | ″ | condition uncertainty |
35 | ″ | ″ | cost |
36 | ″ | ″ | data |
37 | ″ | ″ | data assimilation |
38 | ″ | ″ | data assimilation performance |
39 | ″ | ″ | depth |
40 | ″ | ″ | description |
41 | ″ | ″ | different uncertainty sources |
42 | ″ | ″ | disturbances |
43 | ″ | ″ | effect |
44 | ″ | ″ | ensemble Kalman filter method |
45 | ″ | ″ | error sources |
46 | ″ | ″ | estimates |
47 | ″ | ″ | estimation |
48 | ″ | ″ | estimation accuracy |
49 | ″ | ″ | features |
50 | ″ | ″ | field-scale applications |
51 | ″ | ″ | field-scale problems |
52 | ″ | ″ | filter method |
53 | ″ | ″ | flow |
54 | ″ | ″ | forcing |
55 | ″ | ″ | high cost |
56 | ″ | ″ | hydraulic parameters |
57 | ″ | ″ | importance |
58 | ″ | ″ | inadequate description |
59 | ″ | ″ | influence |
60 | ″ | ″ | information |
61 | ″ | ″ | initial condition uncertainty |
62 | ″ | ″ | initial uncertainty |
63 | ″ | ″ | input data |
64 | ″ | ″ | knowledge |
65 | ″ | ″ | lack |
66 | ″ | ″ | lack of observations |
67 | ″ | ″ | meteorological forcing |
68 | ″ | ″ | method |
69 | ″ | ″ | model |
70 | ″ | ″ | model states |
71 | ″ | ″ | model structure |
72 | ″ | ″ | moisture |
73 | ″ | ″ | moisture estimation |
74 | ″ | ″ | moisture observations |
75 | ″ | ″ | multiple uncertainty sources |
76 | ″ | ″ | negative influence |
77 | ″ | ″ | observations |
78 | ″ | ″ | outcomes |
79 | ″ | ″ | parameter estimation |
80 | ″ | ″ | parameter estimation accuracy |
81 | ″ | ″ | parameters |
82 | ″ | ″ | performance |
83 | ″ | ″ | persistent disturbances |
84 | ″ | ″ | point |
85 | ″ | ″ | positive outcomes |
86 | ″ | ″ | practice |
87 | ″ | ″ | prior knowledge |
88 | ″ | ″ | problem |
89 | ″ | ″ | quality |
90 | ″ | ″ | real case study |
91 | ″ | ″ | real circumstances |
92 | ″ | ″ | realistic practice |
93 | ″ | ″ | representative points |
94 | ″ | ″ | results |
95 | ″ | ″ | scale |
96 | ″ | ″ | shallow soil depth |
97 | ″ | ″ | significant importance |
98 | ″ | ″ | soil depth |
99 | ″ | ″ | soil hydraulic parameters |
100 | ″ | ″ | soil moisture |
101 | ″ | ″ | soil moisture estimation |
102 | ″ | ″ | soil moisture observations |
103 | ″ | ″ | soil water flow |
104 | ″ | ″ | soil water flow model |
105 | ″ | ″ | source |
106 | ″ | ″ | spatial average |
107 | ″ | ″ | spatial-temporal features |
108 | ″ | ″ | spatiotemporal characteristics |
109 | ″ | ″ | spatiotemporal features |
110 | ″ | ″ | state |
111 | ″ | ″ | structure |
112 | ″ | ″ | study |
113 | ″ | ″ | surface soil moisture estimation |
114 | ″ | ″ | temporal variability |
115 | ″ | ″ | uncertainty |
116 | ″ | ″ | uncertainty sources |
117 | ″ | ″ | variability |
118 | ″ | ″ | water flow |
119 | ″ | ″ | water flow model |
120 | ″ | schema:name | Data assimilation of soil water flow by considering multiple uncertainty sources and spatial–temporal features: a field-scale real case study |
121 | ″ | schema:pagination | 2477-2493 |
122 | ″ | schema:productId | Nc649e6c9ef084787953858cf9927c2b6 |
123 | ″ | ″ | Nebb4ea4d82ce463a8632d1227114e80f |
124 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1103191079 |
125 | ″ | ″ | https://doi.org/10.1007/s00477-018-1541-1 |
126 | ″ | schema:sdDatePublished | 2022-05-10T10:21 |
127 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
128 | ″ | schema:sdPublisher | N038107346e84458fa4d8a50f8ad9efe2 |
129 | ″ | schema:url | https://doi.org/10.1007/s00477-018-1541-1 |
130 | ″ | sgo:license | sg:explorer/license/ |
131 | ″ | sgo:sdDataset | articles |
132 | ″ | rdf:type | schema:ScholarlyArticle |
133 | N038107346e84458fa4d8a50f8ad9efe2 | schema:name | Springer Nature - SN SciGraph project |
134 | ″ | rdf:type | schema:Organization |
135 | N0b71d325a0144b4ab28721e600a2762d | rdf:first | sg:person.01041615256.23 |
136 | ″ | rdf:rest | Nc9141e4f7bfa4d4f852b54d0c0350cea |
137 | N30a591323c8d4adb85ae0b2af9b9ef80 | schema:issueNumber | 9 |
138 | ″ | rdf:type | schema:PublicationIssue |
139 | N57a3f16f77804d998555ceffb0faa496 | schema:volumeNumber | 32 |
140 | ″ | rdf:type | schema:PublicationVolume |
141 | N595ab5055b6142108444297ae414702d | rdf:first | sg:person.013753244525.37 |
142 | ″ | rdf:rest | N0b71d325a0144b4ab28721e600a2762d |
143 | N8a84263be6e34cc7a964fd7183fc0a01 | rdf:first | sg:person.012533220152.41 |
144 | ″ | rdf:rest | N595ab5055b6142108444297ae414702d |
145 | Nc649e6c9ef084787953858cf9927c2b6 | schema:name | doi |
146 | ″ | schema:value | 10.1007/s00477-018-1541-1 |
147 | ″ | rdf:type | schema:PropertyValue |
148 | Nc9141e4f7bfa4d4f852b54d0c0350cea | rdf:first | sg:person.07445552050.14 |
149 | ″ | rdf:rest | Ned713ac548bd49a7898fff777278d13d |
150 | Nebb4ea4d82ce463a8632d1227114e80f | schema:name | dimensions_id |
151 | ″ | schema:value | pub.1103191079 |
152 | ″ | rdf:type | schema:PropertyValue |
153 | Ned713ac548bd49a7898fff777278d13d | rdf:first | sg:person.014342721455.73 |
154 | ″ | rdf:rest | rdf:nil |
155 | anzsrc-for:09 | schema:inDefinedTermSet | anzsrc-for: |
156 | ″ | schema:name | Engineering |
157 | ″ | rdf:type | schema:DefinedTerm |
158 | anzsrc-for:0907 | schema:inDefinedTermSet | anzsrc-for: |
159 | ″ | schema:name | Environmental Engineering |
160 | ″ | rdf:type | schema:DefinedTerm |
161 | sg:grant.8261368 | http://pending.schema.org/fundedItem | sg:pub.10.1007/s00477-018-1541-1 |
162 | ″ | rdf:type | schema:MonetaryGrant |
163 | sg:grant.8264501 | http://pending.schema.org/fundedItem | sg:pub.10.1007/s00477-018-1541-1 |
164 | ″ | rdf:type | schema:MonetaryGrant |
165 | sg:journal.1039987 | schema:issn | 1436-3240 |
166 | ″ | ″ | 1436-3259 |
167 | ″ | schema:name | Stochastic Environmental Research and Risk Assessment |
168 | ″ | schema:publisher | Springer Nature |
169 | ″ | rdf:type | schema:Periodical |
170 | sg:person.01041615256.23 | schema:affiliation | grid-institutes:grid.49470.3e |
171 | ″ | schema:familyName | Zha |
172 | ″ | schema:givenName | Yuanyuan |
173 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01041615256.23 |
174 | ″ | rdf:type | schema:Person |
175 | sg:person.012533220152.41 | schema:affiliation | grid-institutes:grid.49470.3e |
176 | ″ | schema:familyName | Li |
177 | ″ | schema:givenName | Xiaomeng |
178 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012533220152.41 |
179 | ″ | rdf:type | schema:Person |
180 | sg:person.013753244525.37 | schema:affiliation | grid-institutes:grid.49470.3e |
181 | ″ | schema:familyName | Shi |
182 | ″ | schema:givenName | Liangsheng |
183 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013753244525.37 |
184 | ″ | rdf:type | schema:Person |
185 | sg:person.014342721455.73 | schema:affiliation | grid-institutes:grid.49470.3e |
186 | ″ | schema:familyName | Hu |
187 | ″ | schema:givenName | Shun |
188 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014342721455.73 |
189 | ″ | rdf:type | schema:Person |
190 | sg:person.07445552050.14 | schema:affiliation | grid-institutes:grid.49470.3e |
191 | ″ | schema:familyName | Wang |
192 | ″ | schema:givenName | Yakun |
193 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07445552050.14 |
194 | ″ | rdf:type | schema:Person |
195 | sg:pub.10.1007/bf00190521 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1021268902 |
196 | ″ | ″ | https://doi.org/10.1007/bf00190521 |
197 | ″ | rdf:type | schema:CreativeWork |
198 | sg:pub.10.1007/bf02918692 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1036359509 |
199 | ″ | ″ | https://doi.org/10.1007/bf02918692 |
200 | ″ | rdf:type | schema:CreativeWork |
201 | sg:pub.10.1007/s00477-010-0400-5 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1041561579 |
202 | ″ | ″ | https://doi.org/10.1007/s00477-010-0400-5 |
203 | ″ | rdf:type | schema:CreativeWork |
204 | sg:pub.10.1007/s00477-011-0534-0 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1007052251 |
205 | ″ | ″ | https://doi.org/10.1007/s00477-011-0534-0 |
206 | ″ | rdf:type | schema:CreativeWork |
207 | sg:pub.10.1007/s00477-012-0682-x | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1048198658 |
208 | ″ | ″ | https://doi.org/10.1007/s00477-012-0682-x |
209 | ″ | rdf:type | schema:CreativeWork |
210 | sg:pub.10.1007/s10236-003-0036-9 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1053511041 |
211 | ″ | ″ | https://doi.org/10.1007/s10236-003-0036-9 |
212 | ″ | rdf:type | schema:CreativeWork |
213 | sg:pub.10.1007/s11431-009-0353-4 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1047395108 |
214 | ″ | ″ | https://doi.org/10.1007/s11431-009-0353-4 |
215 | ″ | rdf:type | schema:CreativeWork |
216 | grid-institutes:grid.49470.3e | schema:alternateName | State Key Laboratory of Water Resources and Hydropower Engineering Sciences, Wuhan University, 430072, Wuhan, Hubei, China |
217 | ″ | schema:name | State Key Laboratory of Water Resources and Hydropower Engineering Sciences, Wuhan University, 430072, Wuhan, Hubei, China |
218 | ″ | rdf:type | schema:Organization |