Data assimilation of soil water flow by considering multiple uncertainty sources and spatial–temporal features: a field-scale real case study View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-04-09

AUTHORS

Xiaomeng Li, Liangsheng Shi, Yuanyuan Zha, Yakun Wang, Shun Hu

ABSTRACT

Accurate estimates of soil moisture and soil hydraulic parameters via data assimilation largely depend on the quality of the model structure, input data and observations. Often, however, all of this information is subject to uncertainty under real circumstances. This real-case study seeks to understand the effects of different uncertainty sources and observation scales on data assimilation performance. Ensemble Kalman filter method based on the soil water-flow model, a sub-module of soil–water–atmosphere–plant model, is established to simultaneously estimate the model states and parameters. The soil hydraulic parameters are extensively measured or calibrated to examine the parameter estimation accuracy. Furthermore, considering the high spatial and temporal variability of soil moisture observation in the field-scale problem, an analysis of spatiotemporal characteristics is combined with data assimilation. Results indicated that simultaneously considering parameter and initial conditions uncertainty leads to a better soil moisture and parameter estimation than that ignoring initial uncertainty in realistic practice. Unlike the other error sources, an inadequate description to the meteorological forcing has a negative influence on surface soil moisture estimation, which might be attributed to the persistent disturbances of evaporation uncertainty and the lack of observations at shallow soil depth. Moreover, a prior knowledge of spatiotemporal features of soil moisture observation is beneficial to efficiently improve data assimilation performance. It is possible to implement field-scale data assimilation with a few representative points, instead of using the spatial average of all observations at a high cost. The assimilation results highlight the possibly positive outcomes of accounting for the multi-source of uncertainties and emphasize the significant importance of characterizing the spatial–temporal feature of soil moisture for a field-scale application. More... »

PAGES

2477-2493

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00477-018-1541-1

DOI

http://dx.doi.org/10.1007/s00477-018-1541-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1103191079


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0907", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Environmental Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "State Key Laboratory of Water Resources and Hydropower Engineering Sciences, Wuhan University, 430072, Wuhan, Hubei, China", 
          "id": "http://www.grid.ac/institutes/grid.49470.3e", 
          "name": [
            "State Key Laboratory of Water Resources and Hydropower Engineering Sciences, Wuhan University, 430072, Wuhan, Hubei, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Xiaomeng", 
        "id": "sg:person.012533220152.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012533220152.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "State Key Laboratory of Water Resources and Hydropower Engineering Sciences, Wuhan University, 430072, Wuhan, Hubei, China", 
          "id": "http://www.grid.ac/institutes/grid.49470.3e", 
          "name": [
            "State Key Laboratory of Water Resources and Hydropower Engineering Sciences, Wuhan University, 430072, Wuhan, Hubei, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shi", 
        "givenName": "Liangsheng", 
        "id": "sg:person.013753244525.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013753244525.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "State Key Laboratory of Water Resources and Hydropower Engineering Sciences, Wuhan University, 430072, Wuhan, Hubei, China", 
          "id": "http://www.grid.ac/institutes/grid.49470.3e", 
          "name": [
            "State Key Laboratory of Water Resources and Hydropower Engineering Sciences, Wuhan University, 430072, Wuhan, Hubei, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zha", 
        "givenName": "Yuanyuan", 
        "id": "sg:person.01041615256.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01041615256.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "State Key Laboratory of Water Resources and Hydropower Engineering Sciences, Wuhan University, 430072, Wuhan, Hubei, China", 
          "id": "http://www.grid.ac/institutes/grid.49470.3e", 
          "name": [
            "State Key Laboratory of Water Resources and Hydropower Engineering Sciences, Wuhan University, 430072, Wuhan, Hubei, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Yakun", 
        "id": "sg:person.07445552050.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07445552050.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "State Key Laboratory of Water Resources and Hydropower Engineering Sciences, Wuhan University, 430072, Wuhan, Hubei, China", 
          "id": "http://www.grid.ac/institutes/grid.49470.3e", 
          "name": [
            "State Key Laboratory of Water Resources and Hydropower Engineering Sciences, Wuhan University, 430072, Wuhan, Hubei, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hu", 
        "givenName": "Shun", 
        "id": "sg:person.014342721455.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014342721455.73"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf02918692", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036359509", 
          "https://doi.org/10.1007/bf02918692"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00477-011-0534-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007052251", 
          "https://doi.org/10.1007/s00477-011-0534-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00477-012-0682-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048198658", 
          "https://doi.org/10.1007/s00477-012-0682-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11431-009-0353-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047395108", 
          "https://doi.org/10.1007/s11431-009-0353-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10236-003-0036-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053511041", 
          "https://doi.org/10.1007/s10236-003-0036-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00477-010-0400-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041561579", 
          "https://doi.org/10.1007/s00477-010-0400-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00190521", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021268902", 
          "https://doi.org/10.1007/bf00190521"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-04-09", 
    "datePublishedReg": "2018-04-09", 
    "description": "Accurate estimates of soil moisture and soil hydraulic parameters via data assimilation largely depend on the quality of the model structure, input data and observations. Often, however, all of this information is subject to uncertainty under real circumstances. This real-case study seeks to understand the effects of different uncertainty sources and observation scales on data assimilation performance. Ensemble Kalman filter method based on the soil water-flow model, a sub-module of soil\u2013water\u2013atmosphere\u2013plant model, is established to simultaneously estimate the model states and parameters. The soil hydraulic parameters are extensively measured or calibrated to examine the parameter estimation accuracy. Furthermore, considering the high spatial and temporal variability of soil moisture observation in the field-scale problem, an analysis of spatiotemporal characteristics is combined with data assimilation. Results indicated that simultaneously considering parameter and initial conditions uncertainty leads to a better soil moisture and parameter estimation than that ignoring initial uncertainty in realistic practice. Unlike the other error sources, an inadequate description to the meteorological forcing has a negative influence on surface soil moisture estimation, which might be attributed to the persistent disturbances of evaporation uncertainty and the lack of observations at shallow soil depth. Moreover, a prior knowledge of spatiotemporal features of soil moisture observation is beneficial to efficiently improve data assimilation performance. It is possible to implement field-scale data assimilation with a few representative points, instead of using the spatial average of all observations at a high cost. The assimilation results highlight the possibly positive outcomes of accounting for the multi-source of uncertainties and emphasize the significant importance of characterizing the spatial\u2013temporal feature of soil moisture for a field-scale application.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00477-018-1541-1", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.8264501", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.8261368", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1039987", 
        "issn": [
          "1436-3240", 
          "1436-3259"
        ], 
        "name": "Stochastic Environmental Research and Risk Assessment", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "9", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "32"
      }
    ], 
    "keywords": [
      "soil moisture observations", 
      "data assimilation performance", 
      "data assimilation", 
      "soil hydraulic parameters", 
      "soil moisture", 
      "moisture observations", 
      "assimilation performance", 
      "surface soil moisture estimation", 
      "hydraulic parameters", 
      "soil moisture estimation", 
      "field-scale problems", 
      "Atmosphere\u2013Plant (SWAP) model", 
      "field-scale applications", 
      "initial condition uncertainty", 
      "lack of observations", 
      "soil water flow model", 
      "ensemble Kalman filter method", 
      "water flow model", 
      "uncertainty sources", 
      "shallow soil depth", 
      "soil water flow", 
      "Kalman filter method", 
      "real case study", 
      "parameter estimation accuracy", 
      "different uncertainty sources", 
      "moisture estimation", 
      "meteorological forcing", 
      "temporal variability", 
      "condition uncertainty", 
      "multiple uncertainty sources", 
      "better soil moisture", 
      "water flow", 
      "spatial-temporal features", 
      "error sources", 
      "spatiotemporal characteristics", 
      "model states", 
      "estimation accuracy", 
      "assimilation", 
      "spatial average", 
      "persistent disturbances", 
      "moisture", 
      "soil depth", 
      "filter method", 
      "parameter estimation", 
      "initial uncertainty", 
      "uncertainty", 
      "input data", 
      "significant importance", 
      "model structure", 
      "accurate estimates", 
      "parameters", 
      "forcing", 
      "high cost", 
      "representative points", 
      "source", 
      "performance", 
      "spatiotemporal features", 
      "real circumstances", 
      "estimation", 
      "depth", 
      "variability", 
      "case study", 
      "flow", 
      "Observation Scale", 
      "prior knowledge", 
      "estimates", 
      "model", 
      "features", 
      "applications", 
      "scale", 
      "accuracy", 
      "cost", 
      "negative influence", 
      "structure", 
      "characteristics", 
      "influence", 
      "average", 
      "observations", 
      "disturbances", 
      "method", 
      "data", 
      "inadequate description", 
      "results", 
      "problem", 
      "point", 
      "effect", 
      "quality", 
      "realistic practice", 
      "importance", 
      "analysis", 
      "description", 
      "study", 
      "lack", 
      "state", 
      "information", 
      "knowledge", 
      "circumstances", 
      "practice", 
      "positive outcomes", 
      "outcomes"
    ], 
    "name": "Data assimilation of soil water flow by considering multiple uncertainty sources and spatial\u2013temporal features: a field-scale real case study", 
    "pagination": "2477-2493", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1103191079"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00477-018-1541-1"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00477-018-1541-1", 
      "https://app.dimensions.ai/details/publication/pub.1103191079"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-10T10:21", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_766.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00477-018-1541-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00477-018-1541-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00477-018-1541-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00477-018-1541-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00477-018-1541-1'


 

This table displays all metadata directly associated to this object as RDF triples.

218 TRIPLES      22 PREDICATES      132 URIs      117 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00477-018-1541-1 schema:about anzsrc-for:09
2 anzsrc-for:0907
3 schema:author N8a84263be6e34cc7a964fd7183fc0a01
4 schema:citation sg:pub.10.1007/bf00190521
5 sg:pub.10.1007/bf02918692
6 sg:pub.10.1007/s00477-010-0400-5
7 sg:pub.10.1007/s00477-011-0534-0
8 sg:pub.10.1007/s00477-012-0682-x
9 sg:pub.10.1007/s10236-003-0036-9
10 sg:pub.10.1007/s11431-009-0353-4
11 schema:datePublished 2018-04-09
12 schema:datePublishedReg 2018-04-09
13 schema:description Accurate estimates of soil moisture and soil hydraulic parameters via data assimilation largely depend on the quality of the model structure, input data and observations. Often, however, all of this information is subject to uncertainty under real circumstances. This real-case study seeks to understand the effects of different uncertainty sources and observation scales on data assimilation performance. Ensemble Kalman filter method based on the soil water-flow model, a sub-module of soil–water–atmosphere–plant model, is established to simultaneously estimate the model states and parameters. The soil hydraulic parameters are extensively measured or calibrated to examine the parameter estimation accuracy. Furthermore, considering the high spatial and temporal variability of soil moisture observation in the field-scale problem, an analysis of spatiotemporal characteristics is combined with data assimilation. Results indicated that simultaneously considering parameter and initial conditions uncertainty leads to a better soil moisture and parameter estimation than that ignoring initial uncertainty in realistic practice. Unlike the other error sources, an inadequate description to the meteorological forcing has a negative influence on surface soil moisture estimation, which might be attributed to the persistent disturbances of evaporation uncertainty and the lack of observations at shallow soil depth. Moreover, a prior knowledge of spatiotemporal features of soil moisture observation is beneficial to efficiently improve data assimilation performance. It is possible to implement field-scale data assimilation with a few representative points, instead of using the spatial average of all observations at a high cost. The assimilation results highlight the possibly positive outcomes of accounting for the multi-source of uncertainties and emphasize the significant importance of characterizing the spatial–temporal feature of soil moisture for a field-scale application.
14 schema:genre article
15 schema:inLanguage en
16 schema:isAccessibleForFree false
17 schema:isPartOf N30a591323c8d4adb85ae0b2af9b9ef80
18 N57a3f16f77804d998555ceffb0faa496
19 sg:journal.1039987
20 schema:keywords Atmosphere–Plant (SWAP) model
21 Kalman filter method
22 Observation Scale
23 accuracy
24 accurate estimates
25 analysis
26 applications
27 assimilation
28 assimilation performance
29 average
30 better soil moisture
31 case study
32 characteristics
33 circumstances
34 condition uncertainty
35 cost
36 data
37 data assimilation
38 data assimilation performance
39 depth
40 description
41 different uncertainty sources
42 disturbances
43 effect
44 ensemble Kalman filter method
45 error sources
46 estimates
47 estimation
48 estimation accuracy
49 features
50 field-scale applications
51 field-scale problems
52 filter method
53 flow
54 forcing
55 high cost
56 hydraulic parameters
57 importance
58 inadequate description
59 influence
60 information
61 initial condition uncertainty
62 initial uncertainty
63 input data
64 knowledge
65 lack
66 lack of observations
67 meteorological forcing
68 method
69 model
70 model states
71 model structure
72 moisture
73 moisture estimation
74 moisture observations
75 multiple uncertainty sources
76 negative influence
77 observations
78 outcomes
79 parameter estimation
80 parameter estimation accuracy
81 parameters
82 performance
83 persistent disturbances
84 point
85 positive outcomes
86 practice
87 prior knowledge
88 problem
89 quality
90 real case study
91 real circumstances
92 realistic practice
93 representative points
94 results
95 scale
96 shallow soil depth
97 significant importance
98 soil depth
99 soil hydraulic parameters
100 soil moisture
101 soil moisture estimation
102 soil moisture observations
103 soil water flow
104 soil water flow model
105 source
106 spatial average
107 spatial-temporal features
108 spatiotemporal characteristics
109 spatiotemporal features
110 state
111 structure
112 study
113 surface soil moisture estimation
114 temporal variability
115 uncertainty
116 uncertainty sources
117 variability
118 water flow
119 water flow model
120 schema:name Data assimilation of soil water flow by considering multiple uncertainty sources and spatial–temporal features: a field-scale real case study
121 schema:pagination 2477-2493
122 schema:productId Nc649e6c9ef084787953858cf9927c2b6
123 Nebb4ea4d82ce463a8632d1227114e80f
124 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103191079
125 https://doi.org/10.1007/s00477-018-1541-1
126 schema:sdDatePublished 2022-05-10T10:21
127 schema:sdLicense https://scigraph.springernature.com/explorer/license/
128 schema:sdPublisher N038107346e84458fa4d8a50f8ad9efe2
129 schema:url https://doi.org/10.1007/s00477-018-1541-1
130 sgo:license sg:explorer/license/
131 sgo:sdDataset articles
132 rdf:type schema:ScholarlyArticle
133 N038107346e84458fa4d8a50f8ad9efe2 schema:name Springer Nature - SN SciGraph project
134 rdf:type schema:Organization
135 N0b71d325a0144b4ab28721e600a2762d rdf:first sg:person.01041615256.23
136 rdf:rest Nc9141e4f7bfa4d4f852b54d0c0350cea
137 N30a591323c8d4adb85ae0b2af9b9ef80 schema:issueNumber 9
138 rdf:type schema:PublicationIssue
139 N57a3f16f77804d998555ceffb0faa496 schema:volumeNumber 32
140 rdf:type schema:PublicationVolume
141 N595ab5055b6142108444297ae414702d rdf:first sg:person.013753244525.37
142 rdf:rest N0b71d325a0144b4ab28721e600a2762d
143 N8a84263be6e34cc7a964fd7183fc0a01 rdf:first sg:person.012533220152.41
144 rdf:rest N595ab5055b6142108444297ae414702d
145 Nc649e6c9ef084787953858cf9927c2b6 schema:name doi
146 schema:value 10.1007/s00477-018-1541-1
147 rdf:type schema:PropertyValue
148 Nc9141e4f7bfa4d4f852b54d0c0350cea rdf:first sg:person.07445552050.14
149 rdf:rest Ned713ac548bd49a7898fff777278d13d
150 Nebb4ea4d82ce463a8632d1227114e80f schema:name dimensions_id
151 schema:value pub.1103191079
152 rdf:type schema:PropertyValue
153 Ned713ac548bd49a7898fff777278d13d rdf:first sg:person.014342721455.73
154 rdf:rest rdf:nil
155 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
156 schema:name Engineering
157 rdf:type schema:DefinedTerm
158 anzsrc-for:0907 schema:inDefinedTermSet anzsrc-for:
159 schema:name Environmental Engineering
160 rdf:type schema:DefinedTerm
161 sg:grant.8261368 http://pending.schema.org/fundedItem sg:pub.10.1007/s00477-018-1541-1
162 rdf:type schema:MonetaryGrant
163 sg:grant.8264501 http://pending.schema.org/fundedItem sg:pub.10.1007/s00477-018-1541-1
164 rdf:type schema:MonetaryGrant
165 sg:journal.1039987 schema:issn 1436-3240
166 1436-3259
167 schema:name Stochastic Environmental Research and Risk Assessment
168 schema:publisher Springer Nature
169 rdf:type schema:Periodical
170 sg:person.01041615256.23 schema:affiliation grid-institutes:grid.49470.3e
171 schema:familyName Zha
172 schema:givenName Yuanyuan
173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01041615256.23
174 rdf:type schema:Person
175 sg:person.012533220152.41 schema:affiliation grid-institutes:grid.49470.3e
176 schema:familyName Li
177 schema:givenName Xiaomeng
178 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012533220152.41
179 rdf:type schema:Person
180 sg:person.013753244525.37 schema:affiliation grid-institutes:grid.49470.3e
181 schema:familyName Shi
182 schema:givenName Liangsheng
183 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013753244525.37
184 rdf:type schema:Person
185 sg:person.014342721455.73 schema:affiliation grid-institutes:grid.49470.3e
186 schema:familyName Hu
187 schema:givenName Shun
188 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014342721455.73
189 rdf:type schema:Person
190 sg:person.07445552050.14 schema:affiliation grid-institutes:grid.49470.3e
191 schema:familyName Wang
192 schema:givenName Yakun
193 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07445552050.14
194 rdf:type schema:Person
195 sg:pub.10.1007/bf00190521 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021268902
196 https://doi.org/10.1007/bf00190521
197 rdf:type schema:CreativeWork
198 sg:pub.10.1007/bf02918692 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036359509
199 https://doi.org/10.1007/bf02918692
200 rdf:type schema:CreativeWork
201 sg:pub.10.1007/s00477-010-0400-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041561579
202 https://doi.org/10.1007/s00477-010-0400-5
203 rdf:type schema:CreativeWork
204 sg:pub.10.1007/s00477-011-0534-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007052251
205 https://doi.org/10.1007/s00477-011-0534-0
206 rdf:type schema:CreativeWork
207 sg:pub.10.1007/s00477-012-0682-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1048198658
208 https://doi.org/10.1007/s00477-012-0682-x
209 rdf:type schema:CreativeWork
210 sg:pub.10.1007/s10236-003-0036-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053511041
211 https://doi.org/10.1007/s10236-003-0036-9
212 rdf:type schema:CreativeWork
213 sg:pub.10.1007/s11431-009-0353-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047395108
214 https://doi.org/10.1007/s11431-009-0353-4
215 rdf:type schema:CreativeWork
216 grid-institutes:grid.49470.3e schema:alternateName State Key Laboratory of Water Resources and Hydropower Engineering Sciences, Wuhan University, 430072, Wuhan, Hubei, China
217 schema:name State Key Laboratory of Water Resources and Hydropower Engineering Sciences, Wuhan University, 430072, Wuhan, Hubei, China
218 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...