Modeling input errors to improve uncertainty estimates for one-dimensional sediment transport models View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-06

AUTHORS

Jeffrey Y. Jung, Jeffrey D. Niemann, Blair P. Greimann

ABSTRACT

Bayesian methods have recently been applied to one-dimensional sediment transport models to assess the uncertainty in model predictions due to uncertainty in the parameter values. However, these approaches neglect any uncertainties in the model inputs, which might play a substantial role. The objective of this research is to include uncertainties in sediment transport model inputs and evaluate their contributions to the overall uncertainty in the model predictions. To accomplish this goal, simple error models are developed for the input data and integrated into an existing Bayesian method. Five types of input data are considered: input discharges, rating curves, vertical and horizontal distances in cross-sections, and benchmark elevations that define the longitudinal profile of the reach. The input errors are modeled using Gaussian distributions, and the means and standard deviations are treated as uncertain parameters that are estimated within the Bayesian framework. The Bayesian approach is coupled to the Sedimentation and River Hydraulics-One Dimension (SRH-1D) model and used to simulate a 23-km reach of the Tachia River in Taiwan. When input uncertainties are included, the prediction ranges change substantially and cover more of the available observations, which suggests the uncertainty is better represented when input errors are considered. The results also indicate that the errors in the benchmark elevations have the largest impact on the uncertainty of the predictions among those considered. More... »

PAGES

1817-1832

References to SciGraph publications

  • 1993-12. Sensitivity and uncertainty analysis of a sediment transport model: a global approach in STOCHASTIC HYDROLOGY AND HYDRAULICS
  • 2017-07. Bayesian tsunami fragility modeling considering input data uncertainty in STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT
  • 2012-12. Monte Carlo method applied to modeling copper transport in river sediments in STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT
  • 2014-03. The comparison of sensitivity analysis of hydrological uncertainty estimates by GLUE and Bayesian method under the impact of precipitation errors in STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00477-017-1495-8

    DOI

    http://dx.doi.org/10.1007/s00477-017-1495-8

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1092937192


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Statistics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Colorado State University", 
              "id": "https://www.grid.ac/institutes/grid.47894.36", 
              "name": [
                "Department of Civil and Environmental Engineering, Colorado State University, Campus Delivery 1372, 80523, Fort Collins, CO, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jung", 
            "givenName": "Jeffrey Y.", 
            "id": "sg:person.013052634660.51", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013052634660.51"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Colorado State University", 
              "id": "https://www.grid.ac/institutes/grid.47894.36", 
              "name": [
                "Department of Civil and Environmental Engineering, Colorado State University, Campus Delivery 1372, 80523, Fort Collins, CO, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Niemann", 
            "givenName": "Jeffrey D.", 
            "id": "sg:person.014265144051.59", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014265144051.59"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Denver Federal Center", 
              "id": "https://www.grid.ac/institutes/grid.417819.2", 
              "name": [
                "Sedimentation and River Hydraulics Group, Technical Service Center, Bureau of Reclamation, Denver Federal Center, Building 67, 80225, Denver, CO, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Greimann", 
            "givenName": "Blair P.", 
            "id": "sg:person.010665405747.61", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010665405747.61"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s00477-016-1230-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001315312", 
              "https://doi.org/10.1007/s00477-016-1230-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00477-016-1230-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001315312", 
              "https://doi.org/10.1007/s00477-016-1230-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00477-016-1230-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001315312", 
              "https://doi.org/10.1007/s00477-016-1230-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1029/2007wr006720", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001917717"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1029/2008wr007320", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004351542"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1201/9781420035988.ch1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007201057"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1029/2011wr010754", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007770209"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0378-3839(02)00042-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009550950"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3390/jmse3031066", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012538167"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1029/2004wr003880", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012791111"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0022-1694(70)90255-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012882666"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0022-1694(70)90255-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012882666"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0167-9473(95)92843-m", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015459319"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00477-012-0564-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021014768", 
              "https://doi.org/10.1007/s00477-012-0564-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00477-013-0767-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021465479", 
              "https://doi.org/10.1007/s00477-013-0767-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1029/2011wr010608", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021484776"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.geomorph.2012.06.012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022635247"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01581617", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023001223", 
              "https://doi.org/10.1007/bf01581617"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01581617", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023001223", 
              "https://doi.org/10.1007/bf01581617"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/00221680009498296", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024498587"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1029/2010wr009690", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025434126"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/0470868333.ch20", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026085280"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1029/2002wr001642", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028623639"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1214/ss/1177011136", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029488311"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.csr.2006.06.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030181232"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1029/2005wr004661", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039764022"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/00221689809498631", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039797735"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0378-3839(03)00002-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044200342"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.envsoft.2016.02.026", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045068885"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1029/2004wr003692", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047002121"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1029/ws006p0049", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047014679"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/esp.301", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048960767"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1029/2003wr002557", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050651147"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1029/2005wr004745", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052473400"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1061/(asce)0733-9429(2008)134:6(847)", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057592930"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1061/(asce)0733-9429(2008)134:8(1142)", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057592975"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1061/(asce)0733-9429(2009)135:1(22)", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057593022"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1061/(asce)hy.1943-7900.0000343", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057635391"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1061/(asce)hy.1943-7900.0000672", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057635715"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1061/(asce)hy.1943-7900.0000992", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057636035"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1699114", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057769646"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2166/hydro.2007.104", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069134670"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2166/wst.2005.0126", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1077131938"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1201/noe0415453639", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095906541"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/0471725234", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1109698695"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/0471725234", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1109698695"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-06", 
        "datePublishedReg": "2018-06-01", 
        "description": "Bayesian methods have recently been applied to one-dimensional sediment transport models to assess the uncertainty in model predictions due to uncertainty in the parameter values. However, these approaches neglect any uncertainties in the model inputs, which might play a substantial role. The objective of this research is to include uncertainties in sediment transport model inputs and evaluate their contributions to the overall uncertainty in the model predictions. To accomplish this goal, simple error models are developed for the input data and integrated into an existing Bayesian method. Five types of input data are considered: input discharges, rating curves, vertical and horizontal distances in cross-sections, and benchmark elevations that define the longitudinal profile of the reach. The input errors are modeled using Gaussian distributions, and the means and standard deviations are treated as uncertain parameters that are estimated within the Bayesian framework. The Bayesian approach is coupled to the Sedimentation and River Hydraulics-One Dimension (SRH-1D) model and used to simulate a 23-km reach of the Tachia River in Taiwan. When input uncertainties are included, the prediction ranges change substantially and cover more of the available observations, which suggests the uncertainty is better represented when input errors are considered. The results also indicate that the errors in the benchmark elevations have the largest impact on the uncertainty of the predictions among those considered.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s00477-017-1495-8", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1039987", 
            "issn": [
              "1436-3240", 
              "1436-3259"
            ], 
            "name": "Stochastic Environmental Research and Risk Assessment", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "6", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "32"
          }
        ], 
        "name": "Modeling input errors to improve uncertainty estimates for one-dimensional sediment transport models", 
        "pagination": "1817-1832", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "340afaafa8f1996d8c5f510351ee95ecbb796dc7017788f06c5bf41b1ce10c5a"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00477-017-1495-8"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1092937192"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00477-017-1495-8", 
          "https://app.dimensions.ai/details/publication/pub.1092937192"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T16:04", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000601.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs00477-017-1495-8"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00477-017-1495-8'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00477-017-1495-8'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00477-017-1495-8'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00477-017-1495-8'


     

    This table displays all metadata directly associated to this object as RDF triples.

    205 TRIPLES      21 PREDICATES      68 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00477-017-1495-8 schema:about anzsrc-for:01
    2 anzsrc-for:0104
    3 schema:author Ne75cd1d6a631440cbe529c6a8c5193a9
    4 schema:citation sg:pub.10.1007/bf01581617
    5 sg:pub.10.1007/s00477-012-0564-2
    6 sg:pub.10.1007/s00477-013-0767-1
    7 sg:pub.10.1007/s00477-016-1230-x
    8 https://doi.org/10.1002/0470868333.ch20
    9 https://doi.org/10.1002/0471725234
    10 https://doi.org/10.1002/esp.301
    11 https://doi.org/10.1016/0022-1694(70)90255-6
    12 https://doi.org/10.1016/0167-9473(95)92843-m
    13 https://doi.org/10.1016/j.csr.2006.06.001
    14 https://doi.org/10.1016/j.envsoft.2016.02.026
    15 https://doi.org/10.1016/j.geomorph.2012.06.012
    16 https://doi.org/10.1016/s0378-3839(02)00042-x
    17 https://doi.org/10.1016/s0378-3839(03)00002-4
    18 https://doi.org/10.1029/2002wr001642
    19 https://doi.org/10.1029/2003wr002557
    20 https://doi.org/10.1029/2004wr003692
    21 https://doi.org/10.1029/2004wr003880
    22 https://doi.org/10.1029/2005wr004661
    23 https://doi.org/10.1029/2005wr004745
    24 https://doi.org/10.1029/2007wr006720
    25 https://doi.org/10.1029/2008wr007320
    26 https://doi.org/10.1029/2010wr009690
    27 https://doi.org/10.1029/2011wr010608
    28 https://doi.org/10.1029/2011wr010754
    29 https://doi.org/10.1029/ws006p0049
    30 https://doi.org/10.1061/(asce)0733-9429(2008)134:6(847)
    31 https://doi.org/10.1061/(asce)0733-9429(2008)134:8(1142)
    32 https://doi.org/10.1061/(asce)0733-9429(2009)135:1(22)
    33 https://doi.org/10.1061/(asce)hy.1943-7900.0000343
    34 https://doi.org/10.1061/(asce)hy.1943-7900.0000672
    35 https://doi.org/10.1061/(asce)hy.1943-7900.0000992
    36 https://doi.org/10.1063/1.1699114
    37 https://doi.org/10.1080/00221680009498296
    38 https://doi.org/10.1080/00221689809498631
    39 https://doi.org/10.1201/9781420035988.ch1
    40 https://doi.org/10.1201/noe0415453639
    41 https://doi.org/10.1214/ss/1177011136
    42 https://doi.org/10.2166/hydro.2007.104
    43 https://doi.org/10.2166/wst.2005.0126
    44 https://doi.org/10.3390/jmse3031066
    45 schema:datePublished 2018-06
    46 schema:datePublishedReg 2018-06-01
    47 schema:description Bayesian methods have recently been applied to one-dimensional sediment transport models to assess the uncertainty in model predictions due to uncertainty in the parameter values. However, these approaches neglect any uncertainties in the model inputs, which might play a substantial role. The objective of this research is to include uncertainties in sediment transport model inputs and evaluate their contributions to the overall uncertainty in the model predictions. To accomplish this goal, simple error models are developed for the input data and integrated into an existing Bayesian method. Five types of input data are considered: input discharges, rating curves, vertical and horizontal distances in cross-sections, and benchmark elevations that define the longitudinal profile of the reach. The input errors are modeled using Gaussian distributions, and the means and standard deviations are treated as uncertain parameters that are estimated within the Bayesian framework. The Bayesian approach is coupled to the Sedimentation and River Hydraulics-One Dimension (SRH-1D) model and used to simulate a 23-km reach of the Tachia River in Taiwan. When input uncertainties are included, the prediction ranges change substantially and cover more of the available observations, which suggests the uncertainty is better represented when input errors are considered. The results also indicate that the errors in the benchmark elevations have the largest impact on the uncertainty of the predictions among those considered.
    48 schema:genre research_article
    49 schema:inLanguage en
    50 schema:isAccessibleForFree false
    51 schema:isPartOf N4de137ba5483444580a5c0e86ecd95df
    52 N6aa54bd5c924474082e209e88c3e3291
    53 sg:journal.1039987
    54 schema:name Modeling input errors to improve uncertainty estimates for one-dimensional sediment transport models
    55 schema:pagination 1817-1832
    56 schema:productId N0be25eeae5fa4680a51ae905d724113e
    57 N2d68aa27b0e34fa4b6b7a5feb253d55b
    58 N7ac6f462260c4c49a028128d60cf7ee0
    59 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092937192
    60 https://doi.org/10.1007/s00477-017-1495-8
    61 schema:sdDatePublished 2019-04-10T16:04
    62 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    63 schema:sdPublisher N254c03fbcb2e4680bf377d014a6a87c5
    64 schema:url http://link.springer.com/10.1007%2Fs00477-017-1495-8
    65 sgo:license sg:explorer/license/
    66 sgo:sdDataset articles
    67 rdf:type schema:ScholarlyArticle
    68 N0be25eeae5fa4680a51ae905d724113e schema:name dimensions_id
    69 schema:value pub.1092937192
    70 rdf:type schema:PropertyValue
    71 N254c03fbcb2e4680bf377d014a6a87c5 schema:name Springer Nature - SN SciGraph project
    72 rdf:type schema:Organization
    73 N2d68aa27b0e34fa4b6b7a5feb253d55b schema:name doi
    74 schema:value 10.1007/s00477-017-1495-8
    75 rdf:type schema:PropertyValue
    76 N2f6886f7c3f146ccaf5576d26aafa5e5 rdf:first sg:person.010665405747.61
    77 rdf:rest rdf:nil
    78 N4de137ba5483444580a5c0e86ecd95df schema:issueNumber 6
    79 rdf:type schema:PublicationIssue
    80 N6aa54bd5c924474082e209e88c3e3291 schema:volumeNumber 32
    81 rdf:type schema:PublicationVolume
    82 N7ac6f462260c4c49a028128d60cf7ee0 schema:name readcube_id
    83 schema:value 340afaafa8f1996d8c5f510351ee95ecbb796dc7017788f06c5bf41b1ce10c5a
    84 rdf:type schema:PropertyValue
    85 N7dac312387fe49a69de39d66648fafa1 rdf:first sg:person.014265144051.59
    86 rdf:rest N2f6886f7c3f146ccaf5576d26aafa5e5
    87 Ne75cd1d6a631440cbe529c6a8c5193a9 rdf:first sg:person.013052634660.51
    88 rdf:rest N7dac312387fe49a69de39d66648fafa1
    89 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    90 schema:name Mathematical Sciences
    91 rdf:type schema:DefinedTerm
    92 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
    93 schema:name Statistics
    94 rdf:type schema:DefinedTerm
    95 sg:journal.1039987 schema:issn 1436-3240
    96 1436-3259
    97 schema:name Stochastic Environmental Research and Risk Assessment
    98 rdf:type schema:Periodical
    99 sg:person.010665405747.61 schema:affiliation https://www.grid.ac/institutes/grid.417819.2
    100 schema:familyName Greimann
    101 schema:givenName Blair P.
    102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010665405747.61
    103 rdf:type schema:Person
    104 sg:person.013052634660.51 schema:affiliation https://www.grid.ac/institutes/grid.47894.36
    105 schema:familyName Jung
    106 schema:givenName Jeffrey Y.
    107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013052634660.51
    108 rdf:type schema:Person
    109 sg:person.014265144051.59 schema:affiliation https://www.grid.ac/institutes/grid.47894.36
    110 schema:familyName Niemann
    111 schema:givenName Jeffrey D.
    112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014265144051.59
    113 rdf:type schema:Person
    114 sg:pub.10.1007/bf01581617 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023001223
    115 https://doi.org/10.1007/bf01581617
    116 rdf:type schema:CreativeWork
    117 sg:pub.10.1007/s00477-012-0564-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021014768
    118 https://doi.org/10.1007/s00477-012-0564-2
    119 rdf:type schema:CreativeWork
    120 sg:pub.10.1007/s00477-013-0767-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021465479
    121 https://doi.org/10.1007/s00477-013-0767-1
    122 rdf:type schema:CreativeWork
    123 sg:pub.10.1007/s00477-016-1230-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1001315312
    124 https://doi.org/10.1007/s00477-016-1230-x
    125 rdf:type schema:CreativeWork
    126 https://doi.org/10.1002/0470868333.ch20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026085280
    127 rdf:type schema:CreativeWork
    128 https://doi.org/10.1002/0471725234 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109698695
    129 rdf:type schema:CreativeWork
    130 https://doi.org/10.1002/esp.301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048960767
    131 rdf:type schema:CreativeWork
    132 https://doi.org/10.1016/0022-1694(70)90255-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012882666
    133 rdf:type schema:CreativeWork
    134 https://doi.org/10.1016/0167-9473(95)92843-m schema:sameAs https://app.dimensions.ai/details/publication/pub.1015459319
    135 rdf:type schema:CreativeWork
    136 https://doi.org/10.1016/j.csr.2006.06.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030181232
    137 rdf:type schema:CreativeWork
    138 https://doi.org/10.1016/j.envsoft.2016.02.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045068885
    139 rdf:type schema:CreativeWork
    140 https://doi.org/10.1016/j.geomorph.2012.06.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022635247
    141 rdf:type schema:CreativeWork
    142 https://doi.org/10.1016/s0378-3839(02)00042-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1009550950
    143 rdf:type schema:CreativeWork
    144 https://doi.org/10.1016/s0378-3839(03)00002-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044200342
    145 rdf:type schema:CreativeWork
    146 https://doi.org/10.1029/2002wr001642 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028623639
    147 rdf:type schema:CreativeWork
    148 https://doi.org/10.1029/2003wr002557 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050651147
    149 rdf:type schema:CreativeWork
    150 https://doi.org/10.1029/2004wr003692 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047002121
    151 rdf:type schema:CreativeWork
    152 https://doi.org/10.1029/2004wr003880 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012791111
    153 rdf:type schema:CreativeWork
    154 https://doi.org/10.1029/2005wr004661 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039764022
    155 rdf:type schema:CreativeWork
    156 https://doi.org/10.1029/2005wr004745 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052473400
    157 rdf:type schema:CreativeWork
    158 https://doi.org/10.1029/2007wr006720 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001917717
    159 rdf:type schema:CreativeWork
    160 https://doi.org/10.1029/2008wr007320 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004351542
    161 rdf:type schema:CreativeWork
    162 https://doi.org/10.1029/2010wr009690 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025434126
    163 rdf:type schema:CreativeWork
    164 https://doi.org/10.1029/2011wr010608 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021484776
    165 rdf:type schema:CreativeWork
    166 https://doi.org/10.1029/2011wr010754 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007770209
    167 rdf:type schema:CreativeWork
    168 https://doi.org/10.1029/ws006p0049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047014679
    169 rdf:type schema:CreativeWork
    170 https://doi.org/10.1061/(asce)0733-9429(2008)134:6(847) schema:sameAs https://app.dimensions.ai/details/publication/pub.1057592930
    171 rdf:type schema:CreativeWork
    172 https://doi.org/10.1061/(asce)0733-9429(2008)134:8(1142) schema:sameAs https://app.dimensions.ai/details/publication/pub.1057592975
    173 rdf:type schema:CreativeWork
    174 https://doi.org/10.1061/(asce)0733-9429(2009)135:1(22) schema:sameAs https://app.dimensions.ai/details/publication/pub.1057593022
    175 rdf:type schema:CreativeWork
    176 https://doi.org/10.1061/(asce)hy.1943-7900.0000343 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057635391
    177 rdf:type schema:CreativeWork
    178 https://doi.org/10.1061/(asce)hy.1943-7900.0000672 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057635715
    179 rdf:type schema:CreativeWork
    180 https://doi.org/10.1061/(asce)hy.1943-7900.0000992 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057636035
    181 rdf:type schema:CreativeWork
    182 https://doi.org/10.1063/1.1699114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057769646
    183 rdf:type schema:CreativeWork
    184 https://doi.org/10.1080/00221680009498296 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024498587
    185 rdf:type schema:CreativeWork
    186 https://doi.org/10.1080/00221689809498631 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039797735
    187 rdf:type schema:CreativeWork
    188 https://doi.org/10.1201/9781420035988.ch1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007201057
    189 rdf:type schema:CreativeWork
    190 https://doi.org/10.1201/noe0415453639 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095906541
    191 rdf:type schema:CreativeWork
    192 https://doi.org/10.1214/ss/1177011136 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029488311
    193 rdf:type schema:CreativeWork
    194 https://doi.org/10.2166/hydro.2007.104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069134670
    195 rdf:type schema:CreativeWork
    196 https://doi.org/10.2166/wst.2005.0126 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077131938
    197 rdf:type schema:CreativeWork
    198 https://doi.org/10.3390/jmse3031066 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012538167
    199 rdf:type schema:CreativeWork
    200 https://www.grid.ac/institutes/grid.417819.2 schema:alternateName Denver Federal Center
    201 schema:name Sedimentation and River Hydraulics Group, Technical Service Center, Bureau of Reclamation, Denver Federal Center, Building 67, 80225, Denver, CO, USA
    202 rdf:type schema:Organization
    203 https://www.grid.ac/institutes/grid.47894.36 schema:alternateName Colorado State University
    204 schema:name Department of Civil and Environmental Engineering, Colorado State University, Campus Delivery 1372, 80523, Fort Collins, CO, USA
    205 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...