On the computation of area probabilities based on a spatial stochastic model for precipitation cells and precipitation amounts View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-12

AUTHORS

Björn Kriesche, Antonín Koubek, Zbyněk Pawlas, Viktor Beneš, Reinhold Hess, Volker Schmidt

ABSTRACT

A main task of weather services is the issuing of warnings for potentially harmful weather events. Automated warning guidances can be derived, e.g., from statistical post-processing of numerical weather prediction using meteorological observations. These statistical methods commonly estimate the probability of an event (e.g. precipitation) occurring at a fixed location (a point probability). However, there are no operationally applicable techniques for estimating the probability of precipitation occurring anywhere in a geographical region (an area probability). We present an approach to the estimation of area probabilities for the occurrence of precipitation exceeding given thresholds. This approach is based on a spatial stochastic model for precipitation cells and precipitation amounts. The basic modeling component is a non-stationary germ-grain model with circular grains for the representation of precipitation cells. Then, we assign a randomly scaled response function to each precipitation cell and sum these functions up to obtain precipitation amounts. We derive formulas for expectations and variances of point precipitation amounts and use these formulas to compute further model characteristics based on available sequences of point probabilities. Area probabilities for arbitrary areas and thresholds can be estimated by repeated Monte Carlo simulation of the fitted precipitation model. Finally, we verify the proposed model by comparing the generated area probabilities with independent rain gauge adjusted radar data. The novelty of the presented approach is that, for the first time, a widely applicable estimation of area probabilities is possible, which is based solely on predicted point probabilities (i.e., neither precipitation observations nor further input of the forecaster are necessary). Therefore, this method can be applied for operational weather predictions. More... »

PAGES

2659-2674

References to SciGraph publications

  • 2005-12. Spatial-temporal rainfall modelling for flood risk estimation in STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT
  • 2000-11. Rainfall modelling using Poisson-cluster processes: a review of developments in STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00477-016-1321-8

    DOI

    http://dx.doi.org/10.1007/s00477-016-1321-8

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1014237512


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Statistics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Ulm", 
              "id": "https://www.grid.ac/institutes/grid.6582.9", 
              "name": [
                "Institute of Stochastics, Ulm University, 89069, Ulm, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kriesche", 
            "givenName": "Bj\u00f6rn", 
            "id": "sg:person.013343640553.42", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013343640553.42"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Charles University", 
              "id": "https://www.grid.ac/institutes/grid.4491.8", 
              "name": [
                "Department of Probability and Mathematical Statistics, Faculty of Mathematics and Physics, Charles University in Prague, 18675, Prague, Czech Republic"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Koubek", 
            "givenName": "Anton\u00edn", 
            "id": "sg:person.014073105753.56", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014073105753.56"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Charles University", 
              "id": "https://www.grid.ac/institutes/grid.4491.8", 
              "name": [
                "Department of Probability and Mathematical Statistics, Faculty of Mathematics and Physics, Charles University in Prague, 18675, Prague, Czech Republic"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pawlas", 
            "givenName": "Zbyn\u011bk", 
            "id": "sg:person.012214115235.35", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012214115235.35"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Charles University", 
              "id": "https://www.grid.ac/institutes/grid.4491.8", 
              "name": [
                "Department of Probability and Mathematical Statistics, Faculty of Mathematics and Physics, Charles University in Prague, 18675, Prague, Czech Republic"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bene\u0161", 
            "givenName": "Viktor", 
            "id": "sg:person.07751634020.83", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07751634020.83"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "German Meteorological Service", 
              "id": "https://www.grid.ac/institutes/grid.38275.3b", 
              "name": [
                "Deutscher Wetterdienst, Research and Development, 63067, Offenbach, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hess", 
            "givenName": "Reinhold", 
            "id": "sg:person.016524767123.52", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016524767123.52"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Ulm", 
              "id": "https://www.grid.ac/institutes/grid.6582.9", 
              "name": [
                "Institute of Stochastics, Ulm University, 89069, Ulm, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Schmidt", 
            "givenName": "Volker", 
            "id": "sg:person.01051347101.48", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01051347101.48"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.spasta.2015.01.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008687741"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1029/wr023i007p01289", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008953518"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1029/2004wr003739", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010861906"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1175/1520-0493(2002)130<0319:togihg>2.0.co;2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011521435"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.simpat.2004.02.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013065838"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00477-005-0011-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014996989", 
              "https://doi.org/10.1007/s00477-005-0011-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00477-005-0011-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014996989", 
              "https://doi.org/10.1007/s00477-005-0011-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s004770000043", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022087267", 
              "https://doi.org/10.1007/s004770000043"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1175/1520-0493(1985)113<1384:sovstt>2.0.co;2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022958852"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.spasta.2016.03.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027881393"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.5194/hess-4-173-2000", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029399774"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.5194/hess-4-173-2000", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029399774"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1029/wr023i010p01893", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033038604"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/qj.2378", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033343655"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1175/1520-0450(1999)038<0786:ptarop>2.0.co;2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038995170"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1098/rspa.1986.0002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052886090"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1175/1520-0493(1966)094<0595:paapp>2.3.co;2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1063451740"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1106883556", 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-12", 
        "datePublishedReg": "2017-12-01", 
        "description": "A main task of weather services is the issuing of warnings for potentially harmful weather events. Automated warning guidances can be derived, e.g., from statistical post-processing of numerical weather prediction using meteorological observations. These statistical methods commonly estimate the probability of an event (e.g. precipitation) occurring at a fixed location (a point probability). However, there are no operationally applicable techniques for estimating the probability of precipitation occurring anywhere in a geographical region (an area probability). We present an approach to the estimation of area probabilities for the occurrence of precipitation exceeding given thresholds. This approach is based on a spatial stochastic model for precipitation cells and precipitation amounts. The basic modeling component is a non-stationary germ-grain model with circular grains for the representation of precipitation cells. Then, we assign a randomly scaled response function to each precipitation cell and sum these functions up to obtain precipitation amounts. We derive formulas for expectations and variances of point precipitation amounts and use these formulas to compute further model characteristics based on available sequences of point probabilities. Area probabilities for arbitrary areas and thresholds can be estimated by repeated Monte Carlo simulation of the fitted precipitation model. Finally, we verify the proposed model by comparing the generated area probabilities with independent rain gauge adjusted radar data. The novelty of the presented approach is that, for the first time, a widely applicable estimation of area probabilities is possible, which is based solely on predicted point probabilities (i.e., neither precipitation observations nor further input of the forecaster are necessary). Therefore, this method can be applied for operational weather predictions.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s00477-016-1321-8", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1039987", 
            "issn": [
              "1436-3240", 
              "1436-3259"
            ], 
            "name": "Stochastic Environmental Research and Risk Assessment", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "10", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "31"
          }
        ], 
        "name": "On the computation of area probabilities based on a spatial stochastic model for precipitation cells and precipitation amounts", 
        "pagination": "2659-2674", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "43d3f1bc350695ed56752f29a8c29c7daab0620c2556ab02cdc69d4edce09f99"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00477-016-1321-8"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1014237512"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00477-016-1321-8", 
          "https://app.dimensions.ai/details/publication/pub.1014237512"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T12:24", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87097_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs00477-016-1321-8"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00477-016-1321-8'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00477-016-1321-8'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00477-016-1321-8'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00477-016-1321-8'


     

    This table displays all metadata directly associated to this object as RDF triples.

    151 TRIPLES      21 PREDICATES      43 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00477-016-1321-8 schema:about anzsrc-for:01
    2 anzsrc-for:0104
    3 schema:author Nea07cd4179274241ab8692e9e7cc546b
    4 schema:citation sg:pub.10.1007/s00477-005-0011-8
    5 sg:pub.10.1007/s004770000043
    6 https://app.dimensions.ai/details/publication/pub.1106883556
    7 https://doi.org/10.1002/qj.2378
    8 https://doi.org/10.1016/j.simpat.2004.02.001
    9 https://doi.org/10.1016/j.spasta.2015.01.002
    10 https://doi.org/10.1016/j.spasta.2016.03.001
    11 https://doi.org/10.1029/2004wr003739
    12 https://doi.org/10.1029/wr023i007p01289
    13 https://doi.org/10.1029/wr023i010p01893
    14 https://doi.org/10.1098/rspa.1986.0002
    15 https://doi.org/10.1175/1520-0450(1999)038<0786:ptarop>2.0.co;2
    16 https://doi.org/10.1175/1520-0493(1966)094<0595:paapp>2.3.co;2
    17 https://doi.org/10.1175/1520-0493(1985)113<1384:sovstt>2.0.co;2
    18 https://doi.org/10.1175/1520-0493(2002)130<0319:togihg>2.0.co;2
    19 https://doi.org/10.5194/hess-4-173-2000
    20 schema:datePublished 2017-12
    21 schema:datePublishedReg 2017-12-01
    22 schema:description A main task of weather services is the issuing of warnings for potentially harmful weather events. Automated warning guidances can be derived, e.g., from statistical post-processing of numerical weather prediction using meteorological observations. These statistical methods commonly estimate the probability of an event (e.g. precipitation) occurring at a fixed location (a point probability). However, there are no operationally applicable techniques for estimating the probability of precipitation occurring anywhere in a geographical region (an area probability). We present an approach to the estimation of area probabilities for the occurrence of precipitation exceeding given thresholds. This approach is based on a spatial stochastic model for precipitation cells and precipitation amounts. The basic modeling component is a non-stationary germ-grain model with circular grains for the representation of precipitation cells. Then, we assign a randomly scaled response function to each precipitation cell and sum these functions up to obtain precipitation amounts. We derive formulas for expectations and variances of point precipitation amounts and use these formulas to compute further model characteristics based on available sequences of point probabilities. Area probabilities for arbitrary areas and thresholds can be estimated by repeated Monte Carlo simulation of the fitted precipitation model. Finally, we verify the proposed model by comparing the generated area probabilities with independent rain gauge adjusted radar data. The novelty of the presented approach is that, for the first time, a widely applicable estimation of area probabilities is possible, which is based solely on predicted point probabilities (i.e., neither precipitation observations nor further input of the forecaster are necessary). Therefore, this method can be applied for operational weather predictions.
    23 schema:genre research_article
    24 schema:inLanguage en
    25 schema:isAccessibleForFree false
    26 schema:isPartOf N44f333f091b54ff4b6b04a9668447a5e
    27 N90ad357ae6b7446892d8f8a2570c7e45
    28 sg:journal.1039987
    29 schema:name On the computation of area probabilities based on a spatial stochastic model for precipitation cells and precipitation amounts
    30 schema:pagination 2659-2674
    31 schema:productId N128406dce3b24d7884c62ba530d808d0
    32 N3aff40eccbad41d59fa1fd573d836293
    33 Nd36594fed5bd454f91d9c354a55d0d1a
    34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014237512
    35 https://doi.org/10.1007/s00477-016-1321-8
    36 schema:sdDatePublished 2019-04-11T12:24
    37 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    38 schema:sdPublisher N9f6633d97b3a413081a03451433de3c8
    39 schema:url https://link.springer.com/10.1007%2Fs00477-016-1321-8
    40 sgo:license sg:explorer/license/
    41 sgo:sdDataset articles
    42 rdf:type schema:ScholarlyArticle
    43 N128406dce3b24d7884c62ba530d808d0 schema:name doi
    44 schema:value 10.1007/s00477-016-1321-8
    45 rdf:type schema:PropertyValue
    46 N29bbd360a88c42f0b905daaea0acf101 rdf:first sg:person.01051347101.48
    47 rdf:rest rdf:nil
    48 N3aff40eccbad41d59fa1fd573d836293 schema:name dimensions_id
    49 schema:value pub.1014237512
    50 rdf:type schema:PropertyValue
    51 N44f333f091b54ff4b6b04a9668447a5e schema:issueNumber 10
    52 rdf:type schema:PublicationIssue
    53 N5e77176a367f430d800dfff59716173f rdf:first sg:person.014073105753.56
    54 rdf:rest Naf3625ff223d42fd93635f9692cbeecc
    55 N734199d81ae141a79e4db6d0d52bda39 rdf:first sg:person.016524767123.52
    56 rdf:rest N29bbd360a88c42f0b905daaea0acf101
    57 N808365c4fb174874b903e8b496e1b163 rdf:first sg:person.07751634020.83
    58 rdf:rest N734199d81ae141a79e4db6d0d52bda39
    59 N90ad357ae6b7446892d8f8a2570c7e45 schema:volumeNumber 31
    60 rdf:type schema:PublicationVolume
    61 N9f6633d97b3a413081a03451433de3c8 schema:name Springer Nature - SN SciGraph project
    62 rdf:type schema:Organization
    63 Naf3625ff223d42fd93635f9692cbeecc rdf:first sg:person.012214115235.35
    64 rdf:rest N808365c4fb174874b903e8b496e1b163
    65 Nd36594fed5bd454f91d9c354a55d0d1a schema:name readcube_id
    66 schema:value 43d3f1bc350695ed56752f29a8c29c7daab0620c2556ab02cdc69d4edce09f99
    67 rdf:type schema:PropertyValue
    68 Nea07cd4179274241ab8692e9e7cc546b rdf:first sg:person.013343640553.42
    69 rdf:rest N5e77176a367f430d800dfff59716173f
    70 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    71 schema:name Mathematical Sciences
    72 rdf:type schema:DefinedTerm
    73 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
    74 schema:name Statistics
    75 rdf:type schema:DefinedTerm
    76 sg:journal.1039987 schema:issn 1436-3240
    77 1436-3259
    78 schema:name Stochastic Environmental Research and Risk Assessment
    79 rdf:type schema:Periodical
    80 sg:person.01051347101.48 schema:affiliation https://www.grid.ac/institutes/grid.6582.9
    81 schema:familyName Schmidt
    82 schema:givenName Volker
    83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01051347101.48
    84 rdf:type schema:Person
    85 sg:person.012214115235.35 schema:affiliation https://www.grid.ac/institutes/grid.4491.8
    86 schema:familyName Pawlas
    87 schema:givenName Zbyněk
    88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012214115235.35
    89 rdf:type schema:Person
    90 sg:person.013343640553.42 schema:affiliation https://www.grid.ac/institutes/grid.6582.9
    91 schema:familyName Kriesche
    92 schema:givenName Björn
    93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013343640553.42
    94 rdf:type schema:Person
    95 sg:person.014073105753.56 schema:affiliation https://www.grid.ac/institutes/grid.4491.8
    96 schema:familyName Koubek
    97 schema:givenName Antonín
    98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014073105753.56
    99 rdf:type schema:Person
    100 sg:person.016524767123.52 schema:affiliation https://www.grid.ac/institutes/grid.38275.3b
    101 schema:familyName Hess
    102 schema:givenName Reinhold
    103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016524767123.52
    104 rdf:type schema:Person
    105 sg:person.07751634020.83 schema:affiliation https://www.grid.ac/institutes/grid.4491.8
    106 schema:familyName Beneš
    107 schema:givenName Viktor
    108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07751634020.83
    109 rdf:type schema:Person
    110 sg:pub.10.1007/s00477-005-0011-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014996989
    111 https://doi.org/10.1007/s00477-005-0011-8
    112 rdf:type schema:CreativeWork
    113 sg:pub.10.1007/s004770000043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022087267
    114 https://doi.org/10.1007/s004770000043
    115 rdf:type schema:CreativeWork
    116 https://app.dimensions.ai/details/publication/pub.1106883556 schema:CreativeWork
    117 https://doi.org/10.1002/qj.2378 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033343655
    118 rdf:type schema:CreativeWork
    119 https://doi.org/10.1016/j.simpat.2004.02.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013065838
    120 rdf:type schema:CreativeWork
    121 https://doi.org/10.1016/j.spasta.2015.01.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008687741
    122 rdf:type schema:CreativeWork
    123 https://doi.org/10.1016/j.spasta.2016.03.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027881393
    124 rdf:type schema:CreativeWork
    125 https://doi.org/10.1029/2004wr003739 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010861906
    126 rdf:type schema:CreativeWork
    127 https://doi.org/10.1029/wr023i007p01289 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008953518
    128 rdf:type schema:CreativeWork
    129 https://doi.org/10.1029/wr023i010p01893 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033038604
    130 rdf:type schema:CreativeWork
    131 https://doi.org/10.1098/rspa.1986.0002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052886090
    132 rdf:type schema:CreativeWork
    133 https://doi.org/10.1175/1520-0450(1999)038<0786:ptarop>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038995170
    134 rdf:type schema:CreativeWork
    135 https://doi.org/10.1175/1520-0493(1966)094<0595:paapp>2.3.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063451740
    136 rdf:type schema:CreativeWork
    137 https://doi.org/10.1175/1520-0493(1985)113<1384:sovstt>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022958852
    138 rdf:type schema:CreativeWork
    139 https://doi.org/10.1175/1520-0493(2002)130<0319:togihg>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011521435
    140 rdf:type schema:CreativeWork
    141 https://doi.org/10.5194/hess-4-173-2000 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029399774
    142 rdf:type schema:CreativeWork
    143 https://www.grid.ac/institutes/grid.38275.3b schema:alternateName German Meteorological Service
    144 schema:name Deutscher Wetterdienst, Research and Development, 63067, Offenbach, Germany
    145 rdf:type schema:Organization
    146 https://www.grid.ac/institutes/grid.4491.8 schema:alternateName Charles University
    147 schema:name Department of Probability and Mathematical Statistics, Faculty of Mathematics and Physics, Charles University in Prague, 18675, Prague, Czech Republic
    148 rdf:type schema:Organization
    149 https://www.grid.ac/institutes/grid.6582.9 schema:alternateName University of Ulm
    150 schema:name Institute of Stochastics, Ulm University, 89069, Ulm, Germany
    151 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...