Extension of observed flood series by combining a distributed hydro-meteorological model and a copula-based model View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-05

AUTHORS

Ana I. Requena, Isabel Flores, Luis Mediero, Luis Garrote

ABSTRACT

Long flood series are required to accurately estimate flood quantiles associated with high return periods, in order to design and assess the risk in hydraulic structures such as dams. However, observed flood series are commonly short. Flood series can be extended through hydro-meteorological modelling, yet the computational effort can be very demanding in case of a distributed model with a short time step is considered to obtain an accurate flood hydrograph characterisation. Statistical models can also be used, where the copula approach is spreading for performing multivariate flood frequency analyses. Nevertheless, the selection of the copula to characterise the dependence structure of short data series involves a large uncertainty. In the present study, a methodology to extend flood series by combining both approaches is introduced. First, the minimum number of flood hydrographs required to be simulated by a spatially distributed hydro-meteorological model is identified in terms of the uncertainty of quantile estimates obtained by both copula and marginal distributions. Second, a large synthetic sample is generated by a bivariate copula-based model, reducing the computation time required by the hydro-meteorological model. The hydro-meteorological modelling chain consists of the RainSim stochastic rainfall generator and the Real-time Interactive Basin Simulator (RIBS) rainfall-runoff model. The proposed procedure is applied to a case study in Spain. As a result, a large synthetic sample of peak-volume pairs is stochastically generated, keeping the statistical properties of the simulated series generated by the hydro-meteorological model. This method reduces the computation time consumed. The extended sample, consisting of the joint simulated and synthetic sample, can be used for improving flood risk assessment studies. More... »

PAGES

1363-1378

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00477-015-1138-x

DOI

http://dx.doi.org/10.1007/s00477-015-1138-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1003759515


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Technical University of Madrid", 
          "id": "https://www.grid.ac/institutes/grid.5690.a", 
          "name": [
            "Department of Civil Engineering: Hydraulics, Energy and Environment, Technical University of Madrid, C/Profesor Aranguren s/n, 28040, Madrid, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Requena", 
        "givenName": "Ana I.", 
        "id": "sg:person.014637422033.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014637422033.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technical University of Madrid", 
          "id": "https://www.grid.ac/institutes/grid.5690.a", 
          "name": [
            "Department of Civil Engineering: Hydraulics, Energy and Environment, Technical University of Madrid, C/Profesor Aranguren s/n, 28040, Madrid, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Flores", 
        "givenName": "Isabel", 
        "id": "sg:person.016232363033.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016232363033.96"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technical University of Madrid", 
          "id": "https://www.grid.ac/institutes/grid.5690.a", 
          "name": [
            "Department of Civil Engineering: Hydraulics, Energy and Environment, Technical University of Madrid, C/Profesor Aranguren s/n, 28040, Madrid, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mediero", 
        "givenName": "Luis", 
        "id": "sg:person.010123154252.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010123154252.92"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technical University of Madrid", 
          "id": "https://www.grid.ac/institutes/grid.5690.a", 
          "name": [
            "Department of Civil Engineering: Hydraulics, Energy and Environment, Technical University of Madrid, C/Profesor Aranguren s/n, 28040, Madrid, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Garrote", 
        "givenName": "Luis", 
        "id": "sg:person.011166625045.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011166625045.51"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0022-1694(82)90136-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001265591"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-1694(82)90136-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001265591"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-1694(96)03042-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002893941"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2004wr003133", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003282085"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0079-1946(96)00010-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006284718"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-1694(96)03238-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006382498"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-1694(94)02592-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008502764"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-1694(99)00057-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009339234"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1467-9469.2006.00470.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011326309"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1467-9469.2006.00470.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011326309"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhydrol.2013.04.045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011751524"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-1694(88)90018-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015076417"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-1694(88)90018-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015076417"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0309-1708(92)90017-v", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015342119"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0309-1708(92)90017-v", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015342119"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2009wr007857", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018091450"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhydrol.2003.12.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018125907"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/nhess-14-1283-2014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019022813"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/nhess-14-1819-2014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020973351"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rspa.1995.0077", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022402304"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rspa.1994.0126", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025154866"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhydrol.2016.02.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026453547"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.envsoft.2008.04.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027777742"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/env.1027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028239741"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/02626667.2011.610322", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029464154"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.pce.2005.08.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029619309"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1752-1688.2006.tb06020.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034493769"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1623/hysj.50.1.45.56334", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034531445"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/hess-15-3293-2011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034545580"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2009wr009040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035293500"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2009wr009040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035293500"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhydrol.2007.09.034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035952305"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/wr008i004p00878", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036548501"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.insmatheco.2007.10.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037667722"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/esp.3290120109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038698278"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-1694(99)00168-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040862158"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2001wr001118", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042633428"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00477-012-0675-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044139966", 
          "https://doi.org/10.1007/s00477-012-0675-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/hess-17-3023-2013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047730490"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00477-010-0364-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049304572", 
          "https://doi.org/10.1007/s00477-010-0364-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00477-010-0364-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049304572", 
          "https://doi.org/10.1007/s00477-010-0364-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2003wr002456", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049357795"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-1694(94)02593-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049725030"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00477-014-0971-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051961599", 
          "https://doi.org/10.1007/s00477-014-0971-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00477-014-0971-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051961599", 
          "https://doi.org/10.1007/s00477-014-0971-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1364-8152(03)00004-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053313893"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1364-8152(03)00004-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053313893"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/(asce)0733-9429(1998)124:2(146)", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057590988"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/(asce)1084-0699(2005)10:1(50)", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057616235"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/(asce)1084-0699(2006)11:2(150)", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057616320"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/(asce)1084-0699(2007)12:4(347)", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057616434"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/(asce)1084-0699(2007)12:4(420)", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057616440"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/(asce)1084-0699(2007)12:4(431)", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057616441"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/(asce)he.1943-5584.0000204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057633787"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.1993.10476372", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058304456"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biomet/82.3.543", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059420583"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/07-aihp148", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064389626"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2166/nh.2011.065", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069135449"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2166/nh.2016.105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069135862"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/41114(371)241", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1096468435"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/13241583.2002.11465209", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099606050"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1201/b13150", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109727365"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-05", 
    "datePublishedReg": "2016-05-01", 
    "description": "Long flood series are required to accurately estimate flood quantiles associated with high return periods, in order to design and assess the risk in hydraulic structures such as dams. However, observed flood series are commonly short. Flood series can be extended through hydro-meteorological modelling, yet the computational effort can be very demanding in case of a distributed model with a short time step is considered to obtain an accurate flood hydrograph characterisation. Statistical models can also be used, where the copula approach is spreading for performing multivariate flood frequency analyses. Nevertheless, the selection of the copula to characterise the dependence structure of short data series involves a large uncertainty. In the present study, a methodology to extend flood series by combining both approaches is introduced. First, the minimum number of flood hydrographs required to be simulated by a spatially distributed hydro-meteorological model is identified in terms of the uncertainty of quantile estimates obtained by both copula and marginal distributions. Second, a large synthetic sample is generated by a bivariate copula-based model, reducing the computation time required by the hydro-meteorological model. The hydro-meteorological modelling chain consists of the RainSim stochastic rainfall generator and the Real-time Interactive Basin Simulator (RIBS) rainfall-runoff model. The proposed procedure is applied to a case study in Spain. As a result, a large synthetic sample of peak-volume pairs is stochastically generated, keeping the statistical properties of the simulated series generated by the hydro-meteorological model. This method reduces the computation time consumed. The extended sample, consisting of the joint simulated and synthetic sample, can be used for improving flood risk assessment studies.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00477-015-1138-x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1039987", 
        "issn": [
          "1436-3240", 
          "1436-3259"
        ], 
        "name": "Stochastic Environmental Research and Risk Assessment", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "30"
      }
    ], 
    "name": "Extension of observed flood series by combining a distributed hydro-meteorological model and a copula-based model", 
    "pagination": "1363-1378", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "11e8bc2538a70b0793be693d66954c7c1a1ddf5fbdc4bfd5133fa5508989905e"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00477-015-1138-x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1003759515"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00477-015-1138-x", 
      "https://app.dimensions.ai/details/publication/pub.1003759515"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T16:01", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000580.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s00477-015-1138-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00477-015-1138-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00477-015-1138-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00477-015-1138-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00477-015-1138-x'


 

This table displays all metadata directly associated to this object as RDF triples.

247 TRIPLES      21 PREDICATES      81 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00477-015-1138-x schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N0deba201ece941d7b0885e7676620558
4 schema:citation sg:pub.10.1007/s00477-010-0364-5
5 sg:pub.10.1007/s00477-012-0675-9
6 sg:pub.10.1007/s00477-014-0971-7
7 https://doi.org/10.1002/env.1027
8 https://doi.org/10.1002/esp.3290120109
9 https://doi.org/10.1016/0022-1694(82)90136-6
10 https://doi.org/10.1016/0022-1694(88)90018-2
11 https://doi.org/10.1016/0022-1694(94)02592-y
12 https://doi.org/10.1016/0022-1694(94)02593-z
13 https://doi.org/10.1016/0309-1708(92)90017-v
14 https://doi.org/10.1016/j.envsoft.2008.04.003
15 https://doi.org/10.1016/j.insmatheco.2007.10.005
16 https://doi.org/10.1016/j.jhydrol.2003.12.025
17 https://doi.org/10.1016/j.jhydrol.2007.09.034
18 https://doi.org/10.1016/j.jhydrol.2013.04.045
19 https://doi.org/10.1016/j.jhydrol.2016.02.004
20 https://doi.org/10.1016/j.pce.2005.08.002
21 https://doi.org/10.1016/s0022-1694(96)03042-9
22 https://doi.org/10.1016/s0022-1694(96)03238-6
23 https://doi.org/10.1016/s0022-1694(99)00057-8
24 https://doi.org/10.1016/s0022-1694(99)00168-7
25 https://doi.org/10.1016/s0079-1946(96)00010-9
26 https://doi.org/10.1016/s1364-8152(03)00004-5
27 https://doi.org/10.1029/2001wr001118
28 https://doi.org/10.1029/2003wr002456
29 https://doi.org/10.1029/2004wr003133
30 https://doi.org/10.1029/2009wr007857
31 https://doi.org/10.1029/2009wr009040
32 https://doi.org/10.1029/wr008i004p00878
33 https://doi.org/10.1061/(asce)0733-9429(1998)124:2(146)
34 https://doi.org/10.1061/(asce)1084-0699(2005)10:1(50)
35 https://doi.org/10.1061/(asce)1084-0699(2006)11:2(150)
36 https://doi.org/10.1061/(asce)1084-0699(2007)12:4(347)
37 https://doi.org/10.1061/(asce)1084-0699(2007)12:4(420)
38 https://doi.org/10.1061/(asce)1084-0699(2007)12:4(431)
39 https://doi.org/10.1061/(asce)he.1943-5584.0000204
40 https://doi.org/10.1061/41114(371)241
41 https://doi.org/10.1080/01621459.1993.10476372
42 https://doi.org/10.1080/02626667.2011.610322
43 https://doi.org/10.1080/13241583.2002.11465209
44 https://doi.org/10.1093/biomet/82.3.543
45 https://doi.org/10.1098/rspa.1994.0126
46 https://doi.org/10.1098/rspa.1995.0077
47 https://doi.org/10.1111/j.1467-9469.2006.00470.x
48 https://doi.org/10.1111/j.1752-1688.2006.tb06020.x
49 https://doi.org/10.1201/b13150
50 https://doi.org/10.1214/07-aihp148
51 https://doi.org/10.1623/hysj.50.1.45.56334
52 https://doi.org/10.2166/nh.2011.065
53 https://doi.org/10.2166/nh.2016.105
54 https://doi.org/10.5194/hess-15-3293-2011
55 https://doi.org/10.5194/hess-17-3023-2013
56 https://doi.org/10.5194/nhess-14-1283-2014
57 https://doi.org/10.5194/nhess-14-1819-2014
58 schema:datePublished 2016-05
59 schema:datePublishedReg 2016-05-01
60 schema:description Long flood series are required to accurately estimate flood quantiles associated with high return periods, in order to design and assess the risk in hydraulic structures such as dams. However, observed flood series are commonly short. Flood series can be extended through hydro-meteorological modelling, yet the computational effort can be very demanding in case of a distributed model with a short time step is considered to obtain an accurate flood hydrograph characterisation. Statistical models can also be used, where the copula approach is spreading for performing multivariate flood frequency analyses. Nevertheless, the selection of the copula to characterise the dependence structure of short data series involves a large uncertainty. In the present study, a methodology to extend flood series by combining both approaches is introduced. First, the minimum number of flood hydrographs required to be simulated by a spatially distributed hydro-meteorological model is identified in terms of the uncertainty of quantile estimates obtained by both copula and marginal distributions. Second, a large synthetic sample is generated by a bivariate copula-based model, reducing the computation time required by the hydro-meteorological model. The hydro-meteorological modelling chain consists of the RainSim stochastic rainfall generator and the Real-time Interactive Basin Simulator (RIBS) rainfall-runoff model. The proposed procedure is applied to a case study in Spain. As a result, a large synthetic sample of peak-volume pairs is stochastically generated, keeping the statistical properties of the simulated series generated by the hydro-meteorological model. This method reduces the computation time consumed. The extended sample, consisting of the joint simulated and synthetic sample, can be used for improving flood risk assessment studies.
61 schema:genre research_article
62 schema:inLanguage en
63 schema:isAccessibleForFree true
64 schema:isPartOf N3584aff7e0b749b69f94e38d96f5deba
65 N4972668ca6804f818cbacf78a776e01d
66 sg:journal.1039987
67 schema:name Extension of observed flood series by combining a distributed hydro-meteorological model and a copula-based model
68 schema:pagination 1363-1378
69 schema:productId N00d1ef1a9b834a369cd06833f18f8a4f
70 Na0146c776a844820b5c426ff9518e59d
71 Nde8ea08292c64c44b829458c9bc754f6
72 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003759515
73 https://doi.org/10.1007/s00477-015-1138-x
74 schema:sdDatePublished 2019-04-10T16:01
75 schema:sdLicense https://scigraph.springernature.com/explorer/license/
76 schema:sdPublisher Nfe46bb7411a3427583c9cf0248cefc55
77 schema:url http://link.springer.com/10.1007/s00477-015-1138-x
78 sgo:license sg:explorer/license/
79 sgo:sdDataset articles
80 rdf:type schema:ScholarlyArticle
81 N00d1ef1a9b834a369cd06833f18f8a4f schema:name readcube_id
82 schema:value 11e8bc2538a70b0793be693d66954c7c1a1ddf5fbdc4bfd5133fa5508989905e
83 rdf:type schema:PropertyValue
84 N0deba201ece941d7b0885e7676620558 rdf:first sg:person.014637422033.40
85 rdf:rest N1f44e5c95247411a996f821d45748880
86 N1f44e5c95247411a996f821d45748880 rdf:first sg:person.016232363033.96
87 rdf:rest N2e4d3ea714e94331b8442c3594a5d80b
88 N2e4d3ea714e94331b8442c3594a5d80b rdf:first sg:person.010123154252.92
89 rdf:rest Nfb67effebde24a2dbb27e22a0dc2b7b6
90 N3584aff7e0b749b69f94e38d96f5deba schema:issueNumber 5
91 rdf:type schema:PublicationIssue
92 N4972668ca6804f818cbacf78a776e01d schema:volumeNumber 30
93 rdf:type schema:PublicationVolume
94 Na0146c776a844820b5c426ff9518e59d schema:name dimensions_id
95 schema:value pub.1003759515
96 rdf:type schema:PropertyValue
97 Nde8ea08292c64c44b829458c9bc754f6 schema:name doi
98 schema:value 10.1007/s00477-015-1138-x
99 rdf:type schema:PropertyValue
100 Nfb67effebde24a2dbb27e22a0dc2b7b6 rdf:first sg:person.011166625045.51
101 rdf:rest rdf:nil
102 Nfe46bb7411a3427583c9cf0248cefc55 schema:name Springer Nature - SN SciGraph project
103 rdf:type schema:Organization
104 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
105 schema:name Mathematical Sciences
106 rdf:type schema:DefinedTerm
107 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
108 schema:name Statistics
109 rdf:type schema:DefinedTerm
110 sg:journal.1039987 schema:issn 1436-3240
111 1436-3259
112 schema:name Stochastic Environmental Research and Risk Assessment
113 rdf:type schema:Periodical
114 sg:person.010123154252.92 schema:affiliation https://www.grid.ac/institutes/grid.5690.a
115 schema:familyName Mediero
116 schema:givenName Luis
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010123154252.92
118 rdf:type schema:Person
119 sg:person.011166625045.51 schema:affiliation https://www.grid.ac/institutes/grid.5690.a
120 schema:familyName Garrote
121 schema:givenName Luis
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011166625045.51
123 rdf:type schema:Person
124 sg:person.014637422033.40 schema:affiliation https://www.grid.ac/institutes/grid.5690.a
125 schema:familyName Requena
126 schema:givenName Ana I.
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014637422033.40
128 rdf:type schema:Person
129 sg:person.016232363033.96 schema:affiliation https://www.grid.ac/institutes/grid.5690.a
130 schema:familyName Flores
131 schema:givenName Isabel
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016232363033.96
133 rdf:type schema:Person
134 sg:pub.10.1007/s00477-010-0364-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049304572
135 https://doi.org/10.1007/s00477-010-0364-5
136 rdf:type schema:CreativeWork
137 sg:pub.10.1007/s00477-012-0675-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044139966
138 https://doi.org/10.1007/s00477-012-0675-9
139 rdf:type schema:CreativeWork
140 sg:pub.10.1007/s00477-014-0971-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051961599
141 https://doi.org/10.1007/s00477-014-0971-7
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1002/env.1027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028239741
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1002/esp.3290120109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038698278
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/0022-1694(82)90136-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001265591
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/0022-1694(88)90018-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015076417
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/0022-1694(94)02592-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1008502764
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/0022-1694(94)02593-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1049725030
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/0309-1708(92)90017-v schema:sameAs https://app.dimensions.ai/details/publication/pub.1015342119
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/j.envsoft.2008.04.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027777742
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/j.insmatheco.2007.10.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037667722
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/j.jhydrol.2003.12.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018125907
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/j.jhydrol.2007.09.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035952305
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1016/j.jhydrol.2013.04.045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011751524
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1016/j.jhydrol.2016.02.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026453547
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1016/j.pce.2005.08.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029619309
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1016/s0022-1694(96)03042-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002893941
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1016/s0022-1694(96)03238-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006382498
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1016/s0022-1694(99)00057-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009339234
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1016/s0022-1694(99)00168-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040862158
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1016/s0079-1946(96)00010-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006284718
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1016/s1364-8152(03)00004-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053313893
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1029/2001wr001118 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042633428
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1029/2003wr002456 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049357795
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1029/2004wr003133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003282085
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1029/2009wr007857 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018091450
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1029/2009wr009040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035293500
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1029/wr008i004p00878 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036548501
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1061/(asce)0733-9429(1998)124:2(146) schema:sameAs https://app.dimensions.ai/details/publication/pub.1057590988
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1061/(asce)1084-0699(2005)10:1(50) schema:sameAs https://app.dimensions.ai/details/publication/pub.1057616235
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1061/(asce)1084-0699(2006)11:2(150) schema:sameAs https://app.dimensions.ai/details/publication/pub.1057616320
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1061/(asce)1084-0699(2007)12:4(347) schema:sameAs https://app.dimensions.ai/details/publication/pub.1057616434
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1061/(asce)1084-0699(2007)12:4(420) schema:sameAs https://app.dimensions.ai/details/publication/pub.1057616440
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1061/(asce)1084-0699(2007)12:4(431) schema:sameAs https://app.dimensions.ai/details/publication/pub.1057616441
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1061/(asce)he.1943-5584.0000204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057633787
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1061/41114(371)241 schema:sameAs https://app.dimensions.ai/details/publication/pub.1096468435
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1080/01621459.1993.10476372 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058304456
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1080/02626667.2011.610322 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029464154
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1080/13241583.2002.11465209 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099606050
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1093/biomet/82.3.543 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059420583
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1098/rspa.1994.0126 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025154866
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1098/rspa.1995.0077 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022402304
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1111/j.1467-9469.2006.00470.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1011326309
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1111/j.1752-1688.2006.tb06020.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1034493769
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1201/b13150 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109727365
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1214/07-aihp148 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064389626
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1623/hysj.50.1.45.56334 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034531445
232 rdf:type schema:CreativeWork
233 https://doi.org/10.2166/nh.2011.065 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069135449
234 rdf:type schema:CreativeWork
235 https://doi.org/10.2166/nh.2016.105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069135862
236 rdf:type schema:CreativeWork
237 https://doi.org/10.5194/hess-15-3293-2011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034545580
238 rdf:type schema:CreativeWork
239 https://doi.org/10.5194/hess-17-3023-2013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047730490
240 rdf:type schema:CreativeWork
241 https://doi.org/10.5194/nhess-14-1283-2014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019022813
242 rdf:type schema:CreativeWork
243 https://doi.org/10.5194/nhess-14-1819-2014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020973351
244 rdf:type schema:CreativeWork
245 https://www.grid.ac/institutes/grid.5690.a schema:alternateName Technical University of Madrid
246 schema:name Department of Civil Engineering: Hydraulics, Energy and Environment, Technical University of Madrid, C/Profesor Aranguren s/n, 28040, Madrid, Spain
247 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...