Spin-off Extreme Value and Archimedean copulas for estimating the bivariate structural risk View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2015-06-28

AUTHORS

R. Pappadà, E. Perrone, F. Durante, G. Salvadori

ABSTRACT

In environmental applications, the estimation of the structural risk is fundamental. Beside the knowledge of the physical response of the structure to the loads of interest, a statistical model for the behavior of the input variables is generally required, possibly accounting for the fact that these variables are usually non-independent. For this purpose, a multivariate approach based on copulas is adopted in this paper. In particular, the following classes of dependence structures are often used in practice: the Extreme Value copulas, and the Archimedean copulas. However, how to properly select a suitable Extreme Value or Archimedean copula is a problem open to many solutions. As a viable one, this work shows how two semi-parametric approximations to, respectively, Extreme Value and Archimedean copulas, can be used in order to circumvent the troublesome selection issue in the estimation of the structural risk. Suitable simulation studies are performed, in order to check and evaluate the performance of the approximating techniques introduced in this work. More... »

PAGES

327-342

References to SciGraph publications

  • 2010. Testing Archimedeanity in COMBINING SOFT COMPUTING AND STATISTICAL METHODS IN DATA ANALYSIS
  • 2013. Copulae in Mathematical and Quantitative Finance, Proceedings of the Workshop Held in Cracow, 10-11 July 2012 in NONE
  • 2013-04-25. Non-parametric copulas for circular–linear and circular–circular data: an application to wind directions in STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT
  • 2014-08-06. Quantitative multi-hazard risk assessment with vulnerability surface and hazard joint return period in STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT
  • 2014. Risk - A Multidisciplinary Introduction in NONE
  • 2014-03-18. Estimation procedures for exchangeable Marshall copulas with hydrological application in STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT
  • 2014-08-03. Using B-splines for nonparametric inference on bivariate extreme-value copulas in EXTREMES
  • 2007. Extremes in Nature, An Approach Using Copulas in NONE
  • 2014-10-14. A nested multivariate copula approach to hydrometeorological simulations of spring floods: the case of the Richelieu River (Québec, Canada) record flood in STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT
  • 2010-05-25. Extreme-Value Copulas in COPULA THEORY AND ITS APPLICATIONS
  • 2010-04-21. Bivariate extreme-value copulas with discrete Pickands dependence measure in EXTREMES
  • 2011-07-05. Inference in multivariate Archimedean copula models in TEST
  • 2009-10-13. Copula-based geostatistical modeling of continuous and discrete data including covariates in STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00477-015-1103-8

    DOI

    http://dx.doi.org/10.1007/s00477-015-1103-8

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1040966054


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0905", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Civil Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Economics, Business, Mathematics and Statistics \u201cBruno De Finetti\u201d, University of Trieste, 34127, Trieste, Italy", 
              "id": "http://www.grid.ac/institutes/grid.5133.4", 
              "name": [
                "Department of Economics, Business, Mathematics and Statistics \u201cBruno De Finetti\u201d, University of Trieste, 34127, Trieste, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pappad\u00e0", 
            "givenName": "R.", 
            "id": "sg:person.013744432541.14", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013744432541.14"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institut f\u00fcr Angewandte Statistik, Johannes Kepler Universit\u00e4t, 4040, Linz, Austria", 
              "id": "http://www.grid.ac/institutes/grid.9970.7", 
              "name": [
                "Institut f\u00fcr Angewandte Statistik, Johannes Kepler Universit\u00e4t, 4040, Linz, Austria"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Perrone", 
            "givenName": "E.", 
            "id": "sg:person.013314537043.87", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013314537043.87"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Faculty of Economics and Management, Free University of Bozen-Bolzano, 39100, Bolzano, Italy", 
              "id": "http://www.grid.ac/institutes/grid.34988.3e", 
              "name": [
                "Faculty of Economics and Management, Free University of Bozen-Bolzano, 39100, Bolzano, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Durante", 
            "givenName": "F.", 
            "id": "sg:person.013475607471.22", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013475607471.22"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Dipartimento di Matematica e Fisica \u201cEnnio De Giorgi\u201d, Universit\u00e0 del Salento, 73100, Lecce, Italy", 
              "id": "http://www.grid.ac/institutes/grid.9906.6", 
              "name": [
                "Dipartimento di Matematica e Fisica \u201cEnnio De Giorgi\u201d, Universit\u00e0 del Salento, 73100, Lecce, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Salvadori", 
            "givenName": "G.", 
            "id": "sg:person.010637636131.10", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010637636131.10"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-3-642-12465-5_6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014168199", 
              "https://doi.org/10.1007/978-3-642-12465-5_6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10687-010-0112-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018210543", 
              "https://doi.org/10.1007/s10687-010-0112-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11749-011-0250-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016370310", 
              "https://doi.org/10.1007/s11749-011-0250-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00477-013-0733-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044397767", 
              "https://doi.org/10.1007/s00477-013-0733-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00477-014-0935-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005089362", 
              "https://doi.org/10.1007/s00477-014-0935-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/1-4020-4415-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002759975", 
              "https://doi.org/10.1007/1-4020-4415-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00477-014-0866-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050872182", 
              "https://doi.org/10.1007/s00477-014-0866-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-14746-3_44", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051266638", 
              "https://doi.org/10.1007/978-3-642-14746-3_44"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00477-014-0971-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051961599", 
              "https://doi.org/10.1007/s00477-014-0971-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00477-009-0353-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019053726", 
              "https://doi.org/10.1007/s00477-009-0353-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10687-014-0199-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000623001", 
              "https://doi.org/10.1007/s10687-014-0199-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-04486-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032082228", 
              "https://doi.org/10.1007/978-3-319-04486-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-35407-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016686594", 
              "https://doi.org/10.1007/978-3-642-35407-6"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2015-06-28", 
        "datePublishedReg": "2015-06-28", 
        "description": "In environmental applications, the estimation of the structural risk is fundamental. Beside the knowledge of the physical response of the structure to the loads of interest, a statistical model for the behavior of the input variables is generally required, possibly accounting for the fact that these variables are usually non-independent. For this purpose, a multivariate approach based on copulas is adopted in this paper. In particular, the following classes of dependence structures are often used in practice: the Extreme Value copulas, and the Archimedean copulas. However, how to properly select a suitable Extreme Value or Archimedean copula is a problem open to many solutions. As a viable one, this work shows how two semi-parametric approximations to, respectively, Extreme Value and Archimedean copulas, can be used in order to circumvent the troublesome selection issue in the estimation of the structural risk. Suitable simulation studies are performed, in order to check and evaluate the performance of the approximating techniques introduced in this work.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s00477-015-1103-8", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1039987", 
            "issn": [
              "1436-3240", 
              "1436-3259"
            ], 
            "name": "Stochastic Environmental Research and Risk Assessment", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "30"
          }
        ], 
        "keywords": [
          "Archimedean copulas", 
          "extreme values", 
          "semi-parametric approximation", 
          "extreme value copulas", 
          "approximating technique", 
          "statistical model", 
          "dependence structure", 
          "simulation study", 
          "structural risk", 
          "copula", 
          "input variables", 
          "estimation", 
          "selection issues", 
          "approximation", 
          "multivariate approach", 
          "variables", 
          "physical response", 
          "problem", 
          "solution", 
          "class", 
          "order", 
          "structure", 
          "loads of interest", 
          "model", 
          "applications", 
          "values", 
          "work", 
          "approach", 
          "one", 
          "technique", 
          "environmental applications", 
          "performance", 
          "behavior", 
          "fact", 
          "interest", 
          "viable one", 
          "load", 
          "purpose", 
          "issues", 
          "knowledge", 
          "study", 
          "response", 
          "practice", 
          "risk", 
          "paper"
        ], 
        "name": "Spin-off Extreme Value and Archimedean copulas for estimating the bivariate structural risk", 
        "pagination": "327-342", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1040966054"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00477-015-1103-8"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00477-015-1103-8", 
          "https://app.dimensions.ai/details/publication/pub.1040966054"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-05-20T07:31", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_673.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s00477-015-1103-8"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00477-015-1103-8'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00477-015-1103-8'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00477-015-1103-8'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00477-015-1103-8'


     

    This table displays all metadata directly associated to this object as RDF triples.

    185 TRIPLES      22 PREDICATES      83 URIs      62 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00477-015-1103-8 schema:about anzsrc-for:09
    2 anzsrc-for:0905
    3 schema:author N5c0f01639fad44a0a650c71ff2444e64
    4 schema:citation sg:pub.10.1007/1-4020-4415-1
    5 sg:pub.10.1007/978-3-319-04486-6
    6 sg:pub.10.1007/978-3-642-12465-5_6
    7 sg:pub.10.1007/978-3-642-14746-3_44
    8 sg:pub.10.1007/978-3-642-35407-6
    9 sg:pub.10.1007/s00477-009-0353-8
    10 sg:pub.10.1007/s00477-013-0733-y
    11 sg:pub.10.1007/s00477-014-0866-7
    12 sg:pub.10.1007/s00477-014-0935-y
    13 sg:pub.10.1007/s00477-014-0971-7
    14 sg:pub.10.1007/s10687-010-0112-8
    15 sg:pub.10.1007/s10687-014-0199-4
    16 sg:pub.10.1007/s11749-011-0250-6
    17 schema:datePublished 2015-06-28
    18 schema:datePublishedReg 2015-06-28
    19 schema:description In environmental applications, the estimation of the structural risk is fundamental. Beside the knowledge of the physical response of the structure to the loads of interest, a statistical model for the behavior of the input variables is generally required, possibly accounting for the fact that these variables are usually non-independent. For this purpose, a multivariate approach based on copulas is adopted in this paper. In particular, the following classes of dependence structures are often used in practice: the Extreme Value copulas, and the Archimedean copulas. However, how to properly select a suitable Extreme Value or Archimedean copula is a problem open to many solutions. As a viable one, this work shows how two semi-parametric approximations to, respectively, Extreme Value and Archimedean copulas, can be used in order to circumvent the troublesome selection issue in the estimation of the structural risk. Suitable simulation studies are performed, in order to check and evaluate the performance of the approximating techniques introduced in this work.
    20 schema:genre article
    21 schema:inLanguage en
    22 schema:isAccessibleForFree false
    23 schema:isPartOf N5acb89035e3c43ce92a87a6fc4f80d07
    24 Nff352c39789d459eabd231512b46aab9
    25 sg:journal.1039987
    26 schema:keywords Archimedean copulas
    27 applications
    28 approach
    29 approximating technique
    30 approximation
    31 behavior
    32 class
    33 copula
    34 dependence structure
    35 environmental applications
    36 estimation
    37 extreme value copulas
    38 extreme values
    39 fact
    40 input variables
    41 interest
    42 issues
    43 knowledge
    44 load
    45 loads of interest
    46 model
    47 multivariate approach
    48 one
    49 order
    50 paper
    51 performance
    52 physical response
    53 practice
    54 problem
    55 purpose
    56 response
    57 risk
    58 selection issues
    59 semi-parametric approximation
    60 simulation study
    61 solution
    62 statistical model
    63 structural risk
    64 structure
    65 study
    66 technique
    67 values
    68 variables
    69 viable one
    70 work
    71 schema:name Spin-off Extreme Value and Archimedean copulas for estimating the bivariate structural risk
    72 schema:pagination 327-342
    73 schema:productId N4236f83b10d7418880e1fc0d7f8942c8
    74 N69bacd0af00b413cb94782a398452e7d
    75 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040966054
    76 https://doi.org/10.1007/s00477-015-1103-8
    77 schema:sdDatePublished 2022-05-20T07:31
    78 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    79 schema:sdPublisher Nec7346f5ec3d4144ab90e3caeeada3fe
    80 schema:url https://doi.org/10.1007/s00477-015-1103-8
    81 sgo:license sg:explorer/license/
    82 sgo:sdDataset articles
    83 rdf:type schema:ScholarlyArticle
    84 N12d5fb06fb7843ebaf62416ac3efa145 rdf:first sg:person.013314537043.87
    85 rdf:rest Nf4ef0955749f450197f1659e871e1dcc
    86 N4236f83b10d7418880e1fc0d7f8942c8 schema:name doi
    87 schema:value 10.1007/s00477-015-1103-8
    88 rdf:type schema:PropertyValue
    89 N5acb89035e3c43ce92a87a6fc4f80d07 schema:issueNumber 1
    90 rdf:type schema:PublicationIssue
    91 N5c0f01639fad44a0a650c71ff2444e64 rdf:first sg:person.013744432541.14
    92 rdf:rest N12d5fb06fb7843ebaf62416ac3efa145
    93 N69bacd0af00b413cb94782a398452e7d schema:name dimensions_id
    94 schema:value pub.1040966054
    95 rdf:type schema:PropertyValue
    96 Ne3d772cb948a42359f327d6ba291fb8b rdf:first sg:person.010637636131.10
    97 rdf:rest rdf:nil
    98 Nec7346f5ec3d4144ab90e3caeeada3fe schema:name Springer Nature - SN SciGraph project
    99 rdf:type schema:Organization
    100 Nf4ef0955749f450197f1659e871e1dcc rdf:first sg:person.013475607471.22
    101 rdf:rest Ne3d772cb948a42359f327d6ba291fb8b
    102 Nff352c39789d459eabd231512b46aab9 schema:volumeNumber 30
    103 rdf:type schema:PublicationVolume
    104 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    105 schema:name Engineering
    106 rdf:type schema:DefinedTerm
    107 anzsrc-for:0905 schema:inDefinedTermSet anzsrc-for:
    108 schema:name Civil Engineering
    109 rdf:type schema:DefinedTerm
    110 sg:journal.1039987 schema:issn 1436-3240
    111 1436-3259
    112 schema:name Stochastic Environmental Research and Risk Assessment
    113 schema:publisher Springer Nature
    114 rdf:type schema:Periodical
    115 sg:person.010637636131.10 schema:affiliation grid-institutes:grid.9906.6
    116 schema:familyName Salvadori
    117 schema:givenName G.
    118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010637636131.10
    119 rdf:type schema:Person
    120 sg:person.013314537043.87 schema:affiliation grid-institutes:grid.9970.7
    121 schema:familyName Perrone
    122 schema:givenName E.
    123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013314537043.87
    124 rdf:type schema:Person
    125 sg:person.013475607471.22 schema:affiliation grid-institutes:grid.34988.3e
    126 schema:familyName Durante
    127 schema:givenName F.
    128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013475607471.22
    129 rdf:type schema:Person
    130 sg:person.013744432541.14 schema:affiliation grid-institutes:grid.5133.4
    131 schema:familyName Pappadà
    132 schema:givenName R.
    133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013744432541.14
    134 rdf:type schema:Person
    135 sg:pub.10.1007/1-4020-4415-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002759975
    136 https://doi.org/10.1007/1-4020-4415-1
    137 rdf:type schema:CreativeWork
    138 sg:pub.10.1007/978-3-319-04486-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032082228
    139 https://doi.org/10.1007/978-3-319-04486-6
    140 rdf:type schema:CreativeWork
    141 sg:pub.10.1007/978-3-642-12465-5_6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014168199
    142 https://doi.org/10.1007/978-3-642-12465-5_6
    143 rdf:type schema:CreativeWork
    144 sg:pub.10.1007/978-3-642-14746-3_44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051266638
    145 https://doi.org/10.1007/978-3-642-14746-3_44
    146 rdf:type schema:CreativeWork
    147 sg:pub.10.1007/978-3-642-35407-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016686594
    148 https://doi.org/10.1007/978-3-642-35407-6
    149 rdf:type schema:CreativeWork
    150 sg:pub.10.1007/s00477-009-0353-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019053726
    151 https://doi.org/10.1007/s00477-009-0353-8
    152 rdf:type schema:CreativeWork
    153 sg:pub.10.1007/s00477-013-0733-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1044397767
    154 https://doi.org/10.1007/s00477-013-0733-y
    155 rdf:type schema:CreativeWork
    156 sg:pub.10.1007/s00477-014-0866-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050872182
    157 https://doi.org/10.1007/s00477-014-0866-7
    158 rdf:type schema:CreativeWork
    159 sg:pub.10.1007/s00477-014-0935-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1005089362
    160 https://doi.org/10.1007/s00477-014-0935-y
    161 rdf:type schema:CreativeWork
    162 sg:pub.10.1007/s00477-014-0971-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051961599
    163 https://doi.org/10.1007/s00477-014-0971-7
    164 rdf:type schema:CreativeWork
    165 sg:pub.10.1007/s10687-010-0112-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018210543
    166 https://doi.org/10.1007/s10687-010-0112-8
    167 rdf:type schema:CreativeWork
    168 sg:pub.10.1007/s10687-014-0199-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000623001
    169 https://doi.org/10.1007/s10687-014-0199-4
    170 rdf:type schema:CreativeWork
    171 sg:pub.10.1007/s11749-011-0250-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016370310
    172 https://doi.org/10.1007/s11749-011-0250-6
    173 rdf:type schema:CreativeWork
    174 grid-institutes:grid.34988.3e schema:alternateName Faculty of Economics and Management, Free University of Bozen-Bolzano, 39100, Bolzano, Italy
    175 schema:name Faculty of Economics and Management, Free University of Bozen-Bolzano, 39100, Bolzano, Italy
    176 rdf:type schema:Organization
    177 grid-institutes:grid.5133.4 schema:alternateName Department of Economics, Business, Mathematics and Statistics “Bruno De Finetti”, University of Trieste, 34127, Trieste, Italy
    178 schema:name Department of Economics, Business, Mathematics and Statistics “Bruno De Finetti”, University of Trieste, 34127, Trieste, Italy
    179 rdf:type schema:Organization
    180 grid-institutes:grid.9906.6 schema:alternateName Dipartimento di Matematica e Fisica “Ennio De Giorgi”, Università del Salento, 73100, Lecce, Italy
    181 schema:name Dipartimento di Matematica e Fisica “Ennio De Giorgi”, Università del Salento, 73100, Lecce, Italy
    182 rdf:type schema:Organization
    183 grid-institutes:grid.9970.7 schema:alternateName Institut für Angewandte Statistik, Johannes Kepler Universität, 4040, Linz, Austria
    184 schema:name Institut für Angewandte Statistik, Johannes Kepler Universität, 4040, Linz, Austria
    185 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...