Estimation procedures for exchangeable Marshall copulas with hydrological application View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-03-18

AUTHORS

Fabrizio Durante, Ostap Okhrin

ABSTRACT

Complex phenomena in environmental sciences can be conveniently represented by several inter-dependent random variables. In order to describe such situations, copula-based models have been studied during the last year. In this paper, we consider a novel family of bivariate copulas, called exchangeable Marshall copulas. Such copulas describe both positive and (upper) tail association between random variables. Specifically, inference procedures for the family of exchangeable Marshall copulas are introduced, based on the estimation of their (univariate) generator. Moreover, the performance of the proposed methodologies is shown in a simulation study. Finally, an illustration describes how the proposed procedures can be useful in a hydrological application. More... »

PAGES

205-226

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00477-014-0866-7

DOI

http://dx.doi.org/10.1007/s00477-014-0866-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1050872182


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "School of Economics and Management, Free University of Bozen-Bolzano, 39100, Bolzano, Italy", 
          "id": "http://www.grid.ac/institutes/grid.34988.3e", 
          "name": [
            "School of Economics and Management, Free University of Bozen-Bolzano, 39100, Bolzano, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Durante", 
        "givenName": "Fabrizio", 
        "id": "sg:person.013475607471.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013475607471.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ladislaus von Bortkiewitcz Chair of Statistics, Center of Applied Statistics and Economics (C.A.S.E.), Humboldt-Universit\u00e4t zu Berlin, Berlin, Germany", 
          "id": "http://www.grid.ac/institutes/grid.7468.d", 
          "name": [
            "Ladislaus von Bortkiewitcz Chair of Statistics, Center of Applied Statistics and Economics (C.A.S.E.), Humboldt-Universit\u00e4t zu Berlin, Berlin, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Okhrin", 
        "givenName": "Ostap", 
        "id": "sg:person.013307640327.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013307640327.86"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/1-4020-4415-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002759975", 
          "https://doi.org/10.1007/1-4020-4415-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00477-008-0249-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001214565", 
          "https://doi.org/10.1007/s00477-008-0249-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11009-009-9134-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012569752", 
          "https://doi.org/10.1007/s11009-009-9134-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00477-009-0353-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019053726", 
          "https://doi.org/10.1007/s00477-009-0353-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00362-007-0064-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033688758", 
          "https://doi.org/10.1007/s00362-007-0064-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00184-011-0344-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025833701", 
          "https://doi.org/10.1007/s00184-011-0344-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00477-013-0766-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044149429", 
          "https://doi.org/10.1007/s00477-013-0766-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-12465-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005643223", 
          "https://doi.org/10.1007/978-3-642-12465-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4939-2104-1_32", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052597805", 
          "https://doi.org/10.1007/978-1-4939-2104-1_32"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-35407-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016686594", 
          "https://doi.org/10.1007/978-3-642-35407-6"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-03-18", 
    "datePublishedReg": "2014-03-18", 
    "description": "Complex phenomena in environmental sciences can be conveniently represented by several inter-dependent random variables. In order to describe such situations, copula-based models have been studied during the last year. In this paper, we consider a novel family of bivariate copulas, called exchangeable Marshall copulas. Such copulas describe both positive and (upper) tail association between random variables. Specifically, inference procedures for the family of exchangeable Marshall copulas are introduced, based on the estimation of their (univariate) generator. Moreover, the performance of the proposed methodologies is shown in a simulation study. Finally, an illustration describes how the proposed procedures can be useful in a hydrological application.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00477-014-0866-7", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1039987", 
        "issn": [
          "1436-3240", 
          "1436-3259"
        ], 
        "name": "Stochastic Environmental Research and Risk Assessment", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "29"
      }
    ], 
    "keywords": [
      "random variables", 
      "copula-based model", 
      "inference procedures", 
      "estimation procedure", 
      "bivariate copulas", 
      "such copulas", 
      "simulation study", 
      "copula", 
      "hydrological applications", 
      "complex phenomenon", 
      "such situations", 
      "environmental science", 
      "variables", 
      "estimation", 
      "applications", 
      "generator", 
      "illustration", 
      "model", 
      "procedure", 
      "phenomenon", 
      "methodology", 
      "order", 
      "performance", 
      "science", 
      "last years", 
      "situation", 
      "novel family", 
      "family", 
      "tail association", 
      "study", 
      "years", 
      "association", 
      "paper"
    ], 
    "name": "Estimation procedures for exchangeable Marshall copulas with hydrological application", 
    "pagination": "205-226", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1050872182"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00477-014-0866-7"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00477-014-0866-7", 
      "https://app.dimensions.ai/details/publication/pub.1050872182"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-10T10:11", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_629.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00477-014-0866-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00477-014-0866-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00477-014-0866-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00477-014-0866-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00477-014-0866-7'


 

This table displays all metadata directly associated to this object as RDF triples.

141 TRIPLES      22 PREDICATES      68 URIs      50 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00477-014-0866-7 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N567b3bec3482467088502fd9ebd85fda
4 schema:citation sg:pub.10.1007/1-4020-4415-1
5 sg:pub.10.1007/978-1-4939-2104-1_32
6 sg:pub.10.1007/978-3-642-12465-5
7 sg:pub.10.1007/978-3-642-35407-6
8 sg:pub.10.1007/s00184-011-0344-x
9 sg:pub.10.1007/s00362-007-0064-5
10 sg:pub.10.1007/s00477-008-0249-z
11 sg:pub.10.1007/s00477-009-0353-8
12 sg:pub.10.1007/s00477-013-0766-2
13 sg:pub.10.1007/s11009-009-9134-6
14 schema:datePublished 2014-03-18
15 schema:datePublishedReg 2014-03-18
16 schema:description Complex phenomena in environmental sciences can be conveniently represented by several inter-dependent random variables. In order to describe such situations, copula-based models have been studied during the last year. In this paper, we consider a novel family of bivariate copulas, called exchangeable Marshall copulas. Such copulas describe both positive and (upper) tail association between random variables. Specifically, inference procedures for the family of exchangeable Marshall copulas are introduced, based on the estimation of their (univariate) generator. Moreover, the performance of the proposed methodologies is shown in a simulation study. Finally, an illustration describes how the proposed procedures can be useful in a hydrological application.
17 schema:genre article
18 schema:inLanguage en
19 schema:isAccessibleForFree true
20 schema:isPartOf N07117ea4494c4c46b991e67f8b36ae05
21 Nd4292b2b509f453c9b231bd6b0cf3bb3
22 sg:journal.1039987
23 schema:keywords applications
24 association
25 bivariate copulas
26 complex phenomenon
27 copula
28 copula-based model
29 environmental science
30 estimation
31 estimation procedure
32 family
33 generator
34 hydrological applications
35 illustration
36 inference procedures
37 last years
38 methodology
39 model
40 novel family
41 order
42 paper
43 performance
44 phenomenon
45 procedure
46 random variables
47 science
48 simulation study
49 situation
50 study
51 such copulas
52 such situations
53 tail association
54 variables
55 years
56 schema:name Estimation procedures for exchangeable Marshall copulas with hydrological application
57 schema:pagination 205-226
58 schema:productId N4362d21695fe477bb9c16d1a37d2547a
59 Nb7f29c087d4f42abada64f2bb7a5d5c2
60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050872182
61 https://doi.org/10.1007/s00477-014-0866-7
62 schema:sdDatePublished 2022-05-10T10:11
63 schema:sdLicense https://scigraph.springernature.com/explorer/license/
64 schema:sdPublisher N8451e21497ce4bc5af01bdd60c0318a6
65 schema:url https://doi.org/10.1007/s00477-014-0866-7
66 sgo:license sg:explorer/license/
67 sgo:sdDataset articles
68 rdf:type schema:ScholarlyArticle
69 N07117ea4494c4c46b991e67f8b36ae05 schema:issueNumber 1
70 rdf:type schema:PublicationIssue
71 N4362d21695fe477bb9c16d1a37d2547a schema:name doi
72 schema:value 10.1007/s00477-014-0866-7
73 rdf:type schema:PropertyValue
74 N567b3bec3482467088502fd9ebd85fda rdf:first sg:person.013475607471.22
75 rdf:rest Nd9fe1e185eff484a988798a542b048c8
76 N8451e21497ce4bc5af01bdd60c0318a6 schema:name Springer Nature - SN SciGraph project
77 rdf:type schema:Organization
78 Nb7f29c087d4f42abada64f2bb7a5d5c2 schema:name dimensions_id
79 schema:value pub.1050872182
80 rdf:type schema:PropertyValue
81 Nd4292b2b509f453c9b231bd6b0cf3bb3 schema:volumeNumber 29
82 rdf:type schema:PublicationVolume
83 Nd9fe1e185eff484a988798a542b048c8 rdf:first sg:person.013307640327.86
84 rdf:rest rdf:nil
85 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
86 schema:name Mathematical Sciences
87 rdf:type schema:DefinedTerm
88 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
89 schema:name Statistics
90 rdf:type schema:DefinedTerm
91 sg:journal.1039987 schema:issn 1436-3240
92 1436-3259
93 schema:name Stochastic Environmental Research and Risk Assessment
94 schema:publisher Springer Nature
95 rdf:type schema:Periodical
96 sg:person.013307640327.86 schema:affiliation grid-institutes:grid.7468.d
97 schema:familyName Okhrin
98 schema:givenName Ostap
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013307640327.86
100 rdf:type schema:Person
101 sg:person.013475607471.22 schema:affiliation grid-institutes:grid.34988.3e
102 schema:familyName Durante
103 schema:givenName Fabrizio
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013475607471.22
105 rdf:type schema:Person
106 sg:pub.10.1007/1-4020-4415-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002759975
107 https://doi.org/10.1007/1-4020-4415-1
108 rdf:type schema:CreativeWork
109 sg:pub.10.1007/978-1-4939-2104-1_32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052597805
110 https://doi.org/10.1007/978-1-4939-2104-1_32
111 rdf:type schema:CreativeWork
112 sg:pub.10.1007/978-3-642-12465-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005643223
113 https://doi.org/10.1007/978-3-642-12465-5
114 rdf:type schema:CreativeWork
115 sg:pub.10.1007/978-3-642-35407-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016686594
116 https://doi.org/10.1007/978-3-642-35407-6
117 rdf:type schema:CreativeWork
118 sg:pub.10.1007/s00184-011-0344-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1025833701
119 https://doi.org/10.1007/s00184-011-0344-x
120 rdf:type schema:CreativeWork
121 sg:pub.10.1007/s00362-007-0064-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033688758
122 https://doi.org/10.1007/s00362-007-0064-5
123 rdf:type schema:CreativeWork
124 sg:pub.10.1007/s00477-008-0249-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1001214565
125 https://doi.org/10.1007/s00477-008-0249-z
126 rdf:type schema:CreativeWork
127 sg:pub.10.1007/s00477-009-0353-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019053726
128 https://doi.org/10.1007/s00477-009-0353-8
129 rdf:type schema:CreativeWork
130 sg:pub.10.1007/s00477-013-0766-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044149429
131 https://doi.org/10.1007/s00477-013-0766-2
132 rdf:type schema:CreativeWork
133 sg:pub.10.1007/s11009-009-9134-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012569752
134 https://doi.org/10.1007/s11009-009-9134-6
135 rdf:type schema:CreativeWork
136 grid-institutes:grid.34988.3e schema:alternateName School of Economics and Management, Free University of Bozen-Bolzano, 39100, Bolzano, Italy
137 schema:name School of Economics and Management, Free University of Bozen-Bolzano, 39100, Bolzano, Italy
138 rdf:type schema:Organization
139 grid-institutes:grid.7468.d schema:alternateName Ladislaus von Bortkiewitcz Chair of Statistics, Center of Applied Statistics and Economics (C.A.S.E.), Humboldt-Universität zu Berlin, Berlin, Germany
140 schema:name Ladislaus von Bortkiewitcz Chair of Statistics, Center of Applied Statistics and Economics (C.A.S.E.), Humboldt-Universität zu Berlin, Berlin, Germany
141 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...