The comparison of sensitivity analysis of hydrological uncertainty estimates by GLUE and Bayesian method under the impact of precipitation errors View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2014-03

AUTHORS

Lu Li, Chong-Yu Xu

ABSTRACT

The input uncertainty is as significant as model error, which affects the parameter estimation, yields bias and misleading results. This study performed a comprehensive comparison and evaluation of uncertainty estimates according to the impact of precipitation errors by GLUE and Bayesian methods using the Metropolis Hasting algorithm in a validated conceptual hydrological model (WASMOD). It aims to explain the sensitivity and differences between the GLUE and Bayesian method applied to hydrological model under precipitation errors with constant multiplier parameter and random multiplier parameter. The 95 % confidence interval of monthly discharge in low flow, medium flow and high flow were selected for comparison. Four indices, i.e. the average relative interval length, the percentage of observations bracketed by the confidence interval, the percentage of observations bracketed by the unit confidence interval and the continuous rank probability score (CRPS) were used in this study for sensitivity analysis under model input error via GLUE and Bayesian methods. It was found that (1) the posterior distributions derived by the Bayesian method are narrower and sharper than those obtained by the GLUE under precipitation errors, but the differences are quite small; (2) Bayesian method performs more sensitive in uncertainty estimates of discharge than GLUE according to the impact of precipitation errors; (3) GLUE and Bayesian methods are more sensitive in uncertainty estimate of high flow than the other flows by the impact of precipitation errors; and (4) under the impact of precipitation, the results of CRPS for low and medium flows are quite stable from both GLUE and Bayesian method while it is sensitive for high flow by Bayesian method. More... »

PAGES

491-504

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00477-013-0767-1

DOI

http://dx.doi.org/10.1007/s00477-013-0767-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1021465479


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Bjerknes Centre for Climate Research", 
          "id": "https://www.grid.ac/institutes/grid.465508.a", 
          "name": [
            "Uni Climate, Uni Research, Bergen, Norway", 
            "Bjerknes Centre for Climate Research, Bergen, Norway"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Lu", 
        "id": "sg:person.015042627571.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015042627571.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Uppsala University", 
          "id": "https://www.grid.ac/institutes/grid.8993.b", 
          "name": [
            "Department of Geosciences, University of Oslo, Oslo, Norway", 
            "Department of Earth Sciences, Uppsala University, Uppsala, Sweden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xu", 
        "givenName": "Chong-Yu", 
        "id": "sg:person.010451602773.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010451602773.88"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00477-010-0382-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003039853", 
          "https://doi.org/10.1007/s00477-010-0382-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00477-010-0382-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003039853", 
          "https://doi.org/10.1007/s00477-010-0382-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2000wr900405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004009520"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00477-008-0274-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011541608", 
          "https://doi.org/10.1007/s00477-008-0274-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2005wr004376", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012362424"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/hess-9-347-2005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012823529"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/hess-9-347-2005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012823529"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-009-0257-2_3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013021277", 
          "https://doi.org/10.1007/978-94-009-0257-2_3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-009-0257-2_3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013021277", 
          "https://doi.org/10.1007/978-94-009-0257-2_3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-1694(98)00198-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013998095"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/1999wr900099", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015620391"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2007wr006768", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016821016"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hyp.6294", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016871338"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/95wr03723", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020240853"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hyp.6623", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020758107"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1623/hysj.54.5.852", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024631847"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhydrol.2009.12.028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026187465"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.advwatres.2005.11.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026894666"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2002wr001642", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028623639"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.advwatres.2008.04.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029043248"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/ss/1177011136", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029488311"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hyp.3360060305", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029650904"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0434(2000)015<0559:dotcrp>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031058864"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-1694(01)00421-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031301729"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhydrol.2011.05.052", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034178771"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhydrol.2007.12.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034389584"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1623/hysj.50.1.45.56334", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034531445"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.advwatres.2007.12.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034852058"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.advwatres.2006.11.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037547447"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00477-012-0579-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039545289", 
          "https://doi.org/10.1007/s00477-012-0579-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/hess-6-883-2002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040868141"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/hess-6-883-2002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040868141"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhydrol.2007.04.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041760729"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0165-1765(80)90024-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041888033"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhydrol.2013.02.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043058816"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2005wr004368", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043517567"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/ws006p0049", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047014679"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2009wr008328", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047074857"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhydrol.2008.05.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048326740"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhydrol.2010.01.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048799513"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2008wr006865", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048922298"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2006wr005497", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049064512"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2005wr004745", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052473400"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhydrol.2010.06.044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053691250"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.1967.10482916", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058300155"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biomet/57.1.97", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059417905"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2166/nh.2012.121", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069135549"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2166/nh.2012.152", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069135568"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2166/nh.2012.166", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069135577"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2166/nh.2012.175", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069135579"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/40976(316)611", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1096577755"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1103194915", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-03", 
    "datePublishedReg": "2014-03-01", 
    "description": "The input uncertainty is as significant as model error, which affects the parameter estimation, yields bias and misleading results. This study performed a comprehensive comparison and evaluation of uncertainty estimates according to the impact of precipitation errors by GLUE and Bayesian methods using the Metropolis Hasting algorithm in a validated conceptual hydrological model (WASMOD). It aims to explain the sensitivity and differences between the GLUE and Bayesian method applied to hydrological model under precipitation errors with constant multiplier parameter and random multiplier parameter. The 95 % confidence interval of monthly discharge in low flow, medium flow and high flow were selected for comparison. Four indices, i.e. the average relative interval length, the percentage of observations bracketed by the confidence interval, the percentage of observations bracketed by the unit confidence interval and the continuous rank probability score (CRPS) were used in this study for sensitivity analysis under model input error via GLUE and Bayesian methods. It was found that (1) the posterior distributions derived by the Bayesian method are narrower and sharper than those obtained by the GLUE under precipitation errors, but the differences are quite small; (2) Bayesian method performs more sensitive in uncertainty estimates of discharge than GLUE according to the impact of precipitation errors; (3) GLUE and Bayesian methods are more sensitive in uncertainty estimate of high flow than the other flows by the impact of precipitation errors; and (4) under the impact of precipitation, the results of CRPS for low and medium flows are quite stable from both GLUE and Bayesian method while it is sensitive for high flow by Bayesian method.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00477-013-0767-1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.4666827", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1039987", 
        "issn": [
          "1436-3240", 
          "1436-3259"
        ], 
        "name": "Stochastic Environmental Research and Risk Assessment", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "28"
      }
    ], 
    "name": "The comparison of sensitivity analysis of hydrological uncertainty estimates by GLUE and Bayesian method under the impact of precipitation errors", 
    "pagination": "491-504", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "6645908e7542c8515f4e55b8a49cebe050d8de23a0ae63e960905e4e8f7024dd"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00477-013-0767-1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1021465479"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00477-013-0767-1", 
      "https://app.dimensions.ai/details/publication/pub.1021465479"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000585.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s00477-013-0767-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00477-013-0767-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00477-013-0767-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00477-013-0767-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00477-013-0767-1'


 

This table displays all metadata directly associated to this object as RDF triples.

222 TRIPLES      21 PREDICATES      75 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00477-013-0767-1 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N0e604ff8cac7464d92f196238251b528
4 schema:citation sg:pub.10.1007/978-94-009-0257-2_3
5 sg:pub.10.1007/s00477-008-0274-y
6 sg:pub.10.1007/s00477-010-0382-3
7 sg:pub.10.1007/s00477-012-0579-8
8 https://app.dimensions.ai/details/publication/pub.1103194915
9 https://doi.org/10.1002/hyp.3360060305
10 https://doi.org/10.1002/hyp.6294
11 https://doi.org/10.1002/hyp.6623
12 https://doi.org/10.1016/0165-1765(80)90024-5
13 https://doi.org/10.1016/j.advwatres.2005.11.013
14 https://doi.org/10.1016/j.advwatres.2006.11.014
15 https://doi.org/10.1016/j.advwatres.2007.12.003
16 https://doi.org/10.1016/j.advwatres.2008.04.012
17 https://doi.org/10.1016/j.jhydrol.2007.04.006
18 https://doi.org/10.1016/j.jhydrol.2007.12.026
19 https://doi.org/10.1016/j.jhydrol.2008.05.012
20 https://doi.org/10.1016/j.jhydrol.2009.12.028
21 https://doi.org/10.1016/j.jhydrol.2010.01.018
22 https://doi.org/10.1016/j.jhydrol.2010.06.044
23 https://doi.org/10.1016/j.jhydrol.2011.05.052
24 https://doi.org/10.1016/j.jhydrol.2013.02.002
25 https://doi.org/10.1016/s0022-1694(01)00421-8
26 https://doi.org/10.1016/s0022-1694(98)00198-x
27 https://doi.org/10.1029/1999wr900099
28 https://doi.org/10.1029/2000wr900405
29 https://doi.org/10.1029/2002wr001642
30 https://doi.org/10.1029/2005wr004368
31 https://doi.org/10.1029/2005wr004376
32 https://doi.org/10.1029/2005wr004745
33 https://doi.org/10.1029/2006wr005497
34 https://doi.org/10.1029/2007wr006768
35 https://doi.org/10.1029/2008wr006865
36 https://doi.org/10.1029/2009wr008328
37 https://doi.org/10.1029/95wr03723
38 https://doi.org/10.1029/ws006p0049
39 https://doi.org/10.1061/40976(316)611
40 https://doi.org/10.1080/01621459.1967.10482916
41 https://doi.org/10.1093/biomet/57.1.97
42 https://doi.org/10.1175/1520-0434(2000)015<0559:dotcrp>2.0.co;2
43 https://doi.org/10.1214/ss/1177011136
44 https://doi.org/10.1623/hysj.50.1.45.56334
45 https://doi.org/10.1623/hysj.54.5.852
46 https://doi.org/10.2166/nh.2012.121
47 https://doi.org/10.2166/nh.2012.152
48 https://doi.org/10.2166/nh.2012.166
49 https://doi.org/10.2166/nh.2012.175
50 https://doi.org/10.5194/hess-6-883-2002
51 https://doi.org/10.5194/hess-9-347-2005
52 schema:datePublished 2014-03
53 schema:datePublishedReg 2014-03-01
54 schema:description The input uncertainty is as significant as model error, which affects the parameter estimation, yields bias and misleading results. This study performed a comprehensive comparison and evaluation of uncertainty estimates according to the impact of precipitation errors by GLUE and Bayesian methods using the Metropolis Hasting algorithm in a validated conceptual hydrological model (WASMOD). It aims to explain the sensitivity and differences between the GLUE and Bayesian method applied to hydrological model under precipitation errors with constant multiplier parameter and random multiplier parameter. The 95 % confidence interval of monthly discharge in low flow, medium flow and high flow were selected for comparison. Four indices, i.e. the average relative interval length, the percentage of observations bracketed by the confidence interval, the percentage of observations bracketed by the unit confidence interval and the continuous rank probability score (CRPS) were used in this study for sensitivity analysis under model input error via GLUE and Bayesian methods. It was found that (1) the posterior distributions derived by the Bayesian method are narrower and sharper than those obtained by the GLUE under precipitation errors, but the differences are quite small; (2) Bayesian method performs more sensitive in uncertainty estimates of discharge than GLUE according to the impact of precipitation errors; (3) GLUE and Bayesian methods are more sensitive in uncertainty estimate of high flow than the other flows by the impact of precipitation errors; and (4) under the impact of precipitation, the results of CRPS for low and medium flows are quite stable from both GLUE and Bayesian method while it is sensitive for high flow by Bayesian method.
55 schema:genre research_article
56 schema:inLanguage en
57 schema:isAccessibleForFree false
58 schema:isPartOf N1394fbebf97f4a86aed26a4ede130437
59 N1a0e9e1459f446e7b1e0292d7c7953a9
60 sg:journal.1039987
61 schema:name The comparison of sensitivity analysis of hydrological uncertainty estimates by GLUE and Bayesian method under the impact of precipitation errors
62 schema:pagination 491-504
63 schema:productId N47e716aec3b44c6e9b664efce64152a0
64 N723e523c1aaf4deb834056f2add82b39
65 Nbe71ea4c241f40c89836b0125239dc6c
66 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021465479
67 https://doi.org/10.1007/s00477-013-0767-1
68 schema:sdDatePublished 2019-04-10T19:19
69 schema:sdLicense https://scigraph.springernature.com/explorer/license/
70 schema:sdPublisher N17f3250318fc46bebd0cbcf96f607e33
71 schema:url http://link.springer.com/10.1007/s00477-013-0767-1
72 sgo:license sg:explorer/license/
73 sgo:sdDataset articles
74 rdf:type schema:ScholarlyArticle
75 N0e604ff8cac7464d92f196238251b528 rdf:first sg:person.015042627571.73
76 rdf:rest N10c131eb873e4f9d9eaff697ea37c122
77 N10c131eb873e4f9d9eaff697ea37c122 rdf:first sg:person.010451602773.88
78 rdf:rest rdf:nil
79 N1394fbebf97f4a86aed26a4ede130437 schema:issueNumber 3
80 rdf:type schema:PublicationIssue
81 N17f3250318fc46bebd0cbcf96f607e33 schema:name Springer Nature - SN SciGraph project
82 rdf:type schema:Organization
83 N1a0e9e1459f446e7b1e0292d7c7953a9 schema:volumeNumber 28
84 rdf:type schema:PublicationVolume
85 N47e716aec3b44c6e9b664efce64152a0 schema:name dimensions_id
86 schema:value pub.1021465479
87 rdf:type schema:PropertyValue
88 N723e523c1aaf4deb834056f2add82b39 schema:name doi
89 schema:value 10.1007/s00477-013-0767-1
90 rdf:type schema:PropertyValue
91 Nbe71ea4c241f40c89836b0125239dc6c schema:name readcube_id
92 schema:value 6645908e7542c8515f4e55b8a49cebe050d8de23a0ae63e960905e4e8f7024dd
93 rdf:type schema:PropertyValue
94 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
95 schema:name Mathematical Sciences
96 rdf:type schema:DefinedTerm
97 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
98 schema:name Statistics
99 rdf:type schema:DefinedTerm
100 sg:grant.4666827 http://pending.schema.org/fundedItem sg:pub.10.1007/s00477-013-0767-1
101 rdf:type schema:MonetaryGrant
102 sg:journal.1039987 schema:issn 1436-3240
103 1436-3259
104 schema:name Stochastic Environmental Research and Risk Assessment
105 rdf:type schema:Periodical
106 sg:person.010451602773.88 schema:affiliation https://www.grid.ac/institutes/grid.8993.b
107 schema:familyName Xu
108 schema:givenName Chong-Yu
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010451602773.88
110 rdf:type schema:Person
111 sg:person.015042627571.73 schema:affiliation https://www.grid.ac/institutes/grid.465508.a
112 schema:familyName Li
113 schema:givenName Lu
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015042627571.73
115 rdf:type schema:Person
116 sg:pub.10.1007/978-94-009-0257-2_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013021277
117 https://doi.org/10.1007/978-94-009-0257-2_3
118 rdf:type schema:CreativeWork
119 sg:pub.10.1007/s00477-008-0274-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1011541608
120 https://doi.org/10.1007/s00477-008-0274-y
121 rdf:type schema:CreativeWork
122 sg:pub.10.1007/s00477-010-0382-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003039853
123 https://doi.org/10.1007/s00477-010-0382-3
124 rdf:type schema:CreativeWork
125 sg:pub.10.1007/s00477-012-0579-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039545289
126 https://doi.org/10.1007/s00477-012-0579-8
127 rdf:type schema:CreativeWork
128 https://app.dimensions.ai/details/publication/pub.1103194915 schema:CreativeWork
129 https://doi.org/10.1002/hyp.3360060305 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029650904
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1002/hyp.6294 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016871338
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1002/hyp.6623 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020758107
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/0165-1765(80)90024-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041888033
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/j.advwatres.2005.11.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026894666
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/j.advwatres.2006.11.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037547447
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/j.advwatres.2007.12.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034852058
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/j.advwatres.2008.04.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029043248
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/j.jhydrol.2007.04.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041760729
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/j.jhydrol.2007.12.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034389584
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/j.jhydrol.2008.05.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048326740
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/j.jhydrol.2009.12.028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026187465
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/j.jhydrol.2010.01.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048799513
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/j.jhydrol.2010.06.044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053691250
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/j.jhydrol.2011.05.052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034178771
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/j.jhydrol.2013.02.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043058816
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/s0022-1694(01)00421-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031301729
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/s0022-1694(98)00198-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1013998095
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1029/1999wr900099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015620391
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1029/2000wr900405 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004009520
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1029/2002wr001642 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028623639
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1029/2005wr004368 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043517567
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1029/2005wr004376 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012362424
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1029/2005wr004745 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052473400
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1029/2006wr005497 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049064512
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1029/2007wr006768 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016821016
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1029/2008wr006865 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048922298
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1029/2009wr008328 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047074857
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1029/95wr03723 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020240853
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1029/ws006p0049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047014679
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1061/40976(316)611 schema:sameAs https://app.dimensions.ai/details/publication/pub.1096577755
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1080/01621459.1967.10482916 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058300155
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1093/biomet/57.1.97 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059417905
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1175/1520-0434(2000)015<0559:dotcrp>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031058864
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1214/ss/1177011136 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029488311
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1623/hysj.50.1.45.56334 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034531445
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1623/hysj.54.5.852 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024631847
202 rdf:type schema:CreativeWork
203 https://doi.org/10.2166/nh.2012.121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069135549
204 rdf:type schema:CreativeWork
205 https://doi.org/10.2166/nh.2012.152 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069135568
206 rdf:type schema:CreativeWork
207 https://doi.org/10.2166/nh.2012.166 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069135577
208 rdf:type schema:CreativeWork
209 https://doi.org/10.2166/nh.2012.175 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069135579
210 rdf:type schema:CreativeWork
211 https://doi.org/10.5194/hess-6-883-2002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040868141
212 rdf:type schema:CreativeWork
213 https://doi.org/10.5194/hess-9-347-2005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012823529
214 rdf:type schema:CreativeWork
215 https://www.grid.ac/institutes/grid.465508.a schema:alternateName Bjerknes Centre for Climate Research
216 schema:name Bjerknes Centre for Climate Research, Bergen, Norway
217 Uni Climate, Uni Research, Bergen, Norway
218 rdf:type schema:Organization
219 https://www.grid.ac/institutes/grid.8993.b schema:alternateName Uppsala University
220 schema:name Department of Earth Sciences, Uppsala University, Uppsala, Sweden
221 Department of Geosciences, University of Oslo, Oslo, Norway
222 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...