Uncertainty quantification of contaminant transport and risk assessment with conditional stochastic collocation method View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2013-01-23

AUTHORS

Liangsheng Shi, Lingzao Zeng, Yunqing Tang, Cheng Chen, Jinzhong Yang

ABSTRACT

Solute transport prediction is always subject to uncertainty due to the scarcity of observation data. The data worth of limited measurements can be explored by conditional simulation. This paper presents an efficient approach for the conditional simulation of solute transport in a randomly heterogeneous aquifer. The conditioning conductivity field is parameterized by the Karhunen–Loève (KL) expansion, and the concentration field is represented by Lagrange polynomials of random variables in the KL expansion. After employing the stochastic collocation method (SCM), stochastic governing advection–dispersion equations are reduced to a series of uncoupled deterministic equations. The concentration realizations can be obtained by sampling the established Lagrange polynomials instead of solving governing equations repeatedly. We assess the accuracy and computational efficiency of this method in comparison to the conditional Monte Carlo simulation. The influence of conditioning to hydraulic conductivity measurements on transport is analyzed. Numerical results demonstrate that the SCM can efficiently derive the conditional statistics of concentration as well as the probability of the aquifer to be contaminated. It is shown that the contamination risk is significantly influenced by measurements conditioning. More... »

PAGES

1453-1464

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00477-012-0682-x

DOI

http://dx.doi.org/10.1007/s00477-012-0682-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1048198658


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, 430072, Wuhan, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.49470.3e", 
          "name": [
            "National Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, 430072, Wuhan, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shi", 
        "givenName": "Liangsheng", 
        "id": "sg:person.013753244525.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013753244525.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Soil and Water Resources and Environmental Science, Zhejiang University, No. 866 Yuhangtang Road, 310058, Hangzhou, Zhejiang, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.13402.34", 
          "name": [
            "Institute of Soil and Water Resources and Environmental Science, Zhejiang University, No. 866 Yuhangtang Road, 310058, Hangzhou, Zhejiang, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zeng", 
        "givenName": "Lingzao", 
        "id": "sg:person.0645574161.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0645574161.79"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, 430072, Wuhan, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.49470.3e", 
          "name": [
            "National Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, 430072, Wuhan, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tang", 
        "givenName": "Yunqing", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Production Enhancement, Halliburton, 77032, Houston, TX, USA", 
          "id": "http://www.grid.ac/institutes/grid.455973.9", 
          "name": [
            "Production Enhancement, Halliburton, 77032, Houston, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Cheng", 
        "id": "sg:person.015652571035.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015652571035.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, 430072, Wuhan, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.49470.3e", 
          "name": [
            "National Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, 430072, Wuhan, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Jinzhong", 
        "id": "sg:person.014731165631.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014731165631.01"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1016/s1001-6058(08)60213-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029517090", 
          "https://doi.org/10.1016/s1001-6058(08)60213-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00477-011-0534-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007052251", 
          "https://doi.org/10.1007/s00477-011-0534-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00477-006-0046-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013426386", 
          "https://doi.org/10.1007/s00477-006-0046-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-3094-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033094591", 
          "https://doi.org/10.1007/978-1-4612-3094-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00477-003-0154-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048479377", 
          "https://doi.org/10.1007/s00477-003-0154-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00477-010-0400-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041561579", 
          "https://doi.org/10.1007/s00477-010-0400-5"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-01-23", 
    "datePublishedReg": "2013-01-23", 
    "description": "Solute transport prediction is always subject to uncertainty due to the scarcity of observation data. The data worth of limited measurements can be explored by conditional simulation. This paper presents an efficient approach for the conditional simulation of solute transport in a randomly heterogeneous aquifer. The conditioning conductivity field is parameterized by the Karhunen\u2013Lo\u00e8ve (KL) expansion, and the concentration field is represented by Lagrange polynomials of random variables in the KL expansion. After employing the stochastic collocation method (SCM), stochastic governing advection\u2013dispersion equations are reduced to a series of uncoupled deterministic equations. The concentration realizations can be obtained by sampling the established Lagrange polynomials instead of solving governing equations repeatedly. We assess the accuracy and computational efficiency of this method in comparison to the conditional Monte Carlo simulation. The influence of conditioning to hydraulic conductivity measurements on transport is analyzed. Numerical results demonstrate that the SCM can efficiently derive the conditional statistics of concentration as well as the probability of the aquifer to be contaminated. It is shown that the contamination risk is significantly influenced by measurements conditioning.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00477-012-0682-x", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.7009352", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.6977970", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.4994897", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.7184287", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1039987", 
        "issn": [
          "1436-3240", 
          "1436-3259"
        ], 
        "name": "Stochastic Environmental Research and Risk Assessment", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "27"
      }
    ], 
    "keywords": [
      "stochastic collocation method", 
      "collocation method", 
      "Lagrange polynomials", 
      "conditional Monte Carlo simulation", 
      "Karhunen\u2013Lo\u00e8ve expansion", 
      "conditional simulation", 
      "advection-dispersion equation", 
      "solute transport predictions", 
      "deterministic equations", 
      "concentration realizations", 
      "measurement conditioning", 
      "uncertainty quantification", 
      "random variables", 
      "KL expansion", 
      "Monte Carlo simulations", 
      "computational efficiency", 
      "conductivity field", 
      "heterogeneous aquifers", 
      "conditional statistics", 
      "hydraulic conductivity measurements", 
      "equations", 
      "transport predictions", 
      "numerical results", 
      "Carlo simulations", 
      "contaminant transport", 
      "data worth", 
      "polynomials", 
      "concentration fields", 
      "solute transport", 
      "efficient approach", 
      "limited measurements", 
      "influence of conditioning", 
      "conductivity measurements", 
      "simulations", 
      "observation data", 
      "statistics", 
      "aquifer", 
      "uncertainty", 
      "probability", 
      "transport", 
      "variables", 
      "contamination risk", 
      "realization", 
      "expansion", 
      "measurements", 
      "field", 
      "accuracy", 
      "approach", 
      "method", 
      "efficiency", 
      "conditioning", 
      "prediction", 
      "influence", 
      "risk assessment", 
      "results", 
      "series", 
      "comparison", 
      "concentration", 
      "data", 
      "quantification", 
      "scarcity", 
      "worth", 
      "assessment", 
      "risk", 
      "paper", 
      "conditioning conductivity field", 
      "uncoupled deterministic equations", 
      "conditional stochastic collocation method"
    ], 
    "name": "Uncertainty quantification of contaminant transport and risk assessment with conditional stochastic collocation method", 
    "pagination": "1453-1464", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1048198658"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00477-012-0682-x"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00477-012-0682-x", 
      "https://app.dimensions.ai/details/publication/pub.1048198658"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:21", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_615.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00477-012-0682-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00477-012-0682-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00477-012-0682-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00477-012-0682-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00477-012-0682-x'


 

This table displays all metadata directly associated to this object as RDF triples.

191 TRIPLES      22 PREDICATES      99 URIs      85 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00477-012-0682-x schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N97892d382f1144c3829f96edfdbc15be
4 schema:citation sg:pub.10.1007/978-1-4612-3094-6
5 sg:pub.10.1007/s00477-003-0154-4
6 sg:pub.10.1007/s00477-006-0046-5
7 sg:pub.10.1007/s00477-010-0400-5
8 sg:pub.10.1007/s00477-011-0534-0
9 sg:pub.10.1016/s1001-6058(08)60213-9
10 schema:datePublished 2013-01-23
11 schema:datePublishedReg 2013-01-23
12 schema:description Solute transport prediction is always subject to uncertainty due to the scarcity of observation data. The data worth of limited measurements can be explored by conditional simulation. This paper presents an efficient approach for the conditional simulation of solute transport in a randomly heterogeneous aquifer. The conditioning conductivity field is parameterized by the Karhunen–Loève (KL) expansion, and the concentration field is represented by Lagrange polynomials of random variables in the KL expansion. After employing the stochastic collocation method (SCM), stochastic governing advection–dispersion equations are reduced to a series of uncoupled deterministic equations. The concentration realizations can be obtained by sampling the established Lagrange polynomials instead of solving governing equations repeatedly. We assess the accuracy and computational efficiency of this method in comparison to the conditional Monte Carlo simulation. The influence of conditioning to hydraulic conductivity measurements on transport is analyzed. Numerical results demonstrate that the SCM can efficiently derive the conditional statistics of concentration as well as the probability of the aquifer to be contaminated. It is shown that the contamination risk is significantly influenced by measurements conditioning.
13 schema:genre article
14 schema:inLanguage en
15 schema:isAccessibleForFree false
16 schema:isPartOf Nd573168ad8ba4dbe96461dca2ee05b0a
17 Nfe2b7d76c4884346b0099d7ac2c76705
18 sg:journal.1039987
19 schema:keywords Carlo simulations
20 KL expansion
21 Karhunen–Loève expansion
22 Lagrange polynomials
23 Monte Carlo simulations
24 accuracy
25 advection-dispersion equation
26 approach
27 aquifer
28 assessment
29 collocation method
30 comparison
31 computational efficiency
32 concentration
33 concentration fields
34 concentration realizations
35 conditional Monte Carlo simulation
36 conditional simulation
37 conditional statistics
38 conditional stochastic collocation method
39 conditioning
40 conditioning conductivity field
41 conductivity field
42 conductivity measurements
43 contaminant transport
44 contamination risk
45 data
46 data worth
47 deterministic equations
48 efficiency
49 efficient approach
50 equations
51 expansion
52 field
53 heterogeneous aquifers
54 hydraulic conductivity measurements
55 influence
56 influence of conditioning
57 limited measurements
58 measurement conditioning
59 measurements
60 method
61 numerical results
62 observation data
63 paper
64 polynomials
65 prediction
66 probability
67 quantification
68 random variables
69 realization
70 results
71 risk
72 risk assessment
73 scarcity
74 series
75 simulations
76 solute transport
77 solute transport predictions
78 statistics
79 stochastic collocation method
80 transport
81 transport predictions
82 uncertainty
83 uncertainty quantification
84 uncoupled deterministic equations
85 variables
86 worth
87 schema:name Uncertainty quantification of contaminant transport and risk assessment with conditional stochastic collocation method
88 schema:pagination 1453-1464
89 schema:productId N3a0a6a291e454d798fc3bc9481c664c7
90 Nf52a2a8d99434921a34c837fbc55c7bb
91 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048198658
92 https://doi.org/10.1007/s00477-012-0682-x
93 schema:sdDatePublished 2021-11-01T18:21
94 schema:sdLicense https://scigraph.springernature.com/explorer/license/
95 schema:sdPublisher N8f0c64a3f2fd4f4882c7bd03d2e5a8eb
96 schema:url https://doi.org/10.1007/s00477-012-0682-x
97 sgo:license sg:explorer/license/
98 sgo:sdDataset articles
99 rdf:type schema:ScholarlyArticle
100 N365f999335ad4ecc82169625f20f306c schema:affiliation grid-institutes:grid.49470.3e
101 schema:familyName Tang
102 schema:givenName Yunqing
103 rdf:type schema:Person
104 N3a0a6a291e454d798fc3bc9481c664c7 schema:name doi
105 schema:value 10.1007/s00477-012-0682-x
106 rdf:type schema:PropertyValue
107 N419c809388684f6c9ac166031be54b5e rdf:first N365f999335ad4ecc82169625f20f306c
108 rdf:rest N77a87c8b8fb24d1d97c429d4c646e6f5
109 N77a87c8b8fb24d1d97c429d4c646e6f5 rdf:first sg:person.015652571035.13
110 rdf:rest N9370578cd12b4662b27db5816f6bb862
111 N854e6e2eb2904fd1a30388173b690b2f rdf:first sg:person.0645574161.79
112 rdf:rest N419c809388684f6c9ac166031be54b5e
113 N8f0c64a3f2fd4f4882c7bd03d2e5a8eb schema:name Springer Nature - SN SciGraph project
114 rdf:type schema:Organization
115 N9370578cd12b4662b27db5816f6bb862 rdf:first sg:person.014731165631.01
116 rdf:rest rdf:nil
117 N97892d382f1144c3829f96edfdbc15be rdf:first sg:person.013753244525.37
118 rdf:rest N854e6e2eb2904fd1a30388173b690b2f
119 Nd573168ad8ba4dbe96461dca2ee05b0a schema:issueNumber 6
120 rdf:type schema:PublicationIssue
121 Nf52a2a8d99434921a34c837fbc55c7bb schema:name dimensions_id
122 schema:value pub.1048198658
123 rdf:type schema:PropertyValue
124 Nfe2b7d76c4884346b0099d7ac2c76705 schema:volumeNumber 27
125 rdf:type schema:PublicationVolume
126 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
127 schema:name Mathematical Sciences
128 rdf:type schema:DefinedTerm
129 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
130 schema:name Statistics
131 rdf:type schema:DefinedTerm
132 sg:grant.4994897 http://pending.schema.org/fundedItem sg:pub.10.1007/s00477-012-0682-x
133 rdf:type schema:MonetaryGrant
134 sg:grant.6977970 http://pending.schema.org/fundedItem sg:pub.10.1007/s00477-012-0682-x
135 rdf:type schema:MonetaryGrant
136 sg:grant.7009352 http://pending.schema.org/fundedItem sg:pub.10.1007/s00477-012-0682-x
137 rdf:type schema:MonetaryGrant
138 sg:grant.7184287 http://pending.schema.org/fundedItem sg:pub.10.1007/s00477-012-0682-x
139 rdf:type schema:MonetaryGrant
140 sg:journal.1039987 schema:issn 1436-3240
141 1436-3259
142 schema:name Stochastic Environmental Research and Risk Assessment
143 schema:publisher Springer Nature
144 rdf:type schema:Periodical
145 sg:person.013753244525.37 schema:affiliation grid-institutes:grid.49470.3e
146 schema:familyName Shi
147 schema:givenName Liangsheng
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013753244525.37
149 rdf:type schema:Person
150 sg:person.014731165631.01 schema:affiliation grid-institutes:grid.49470.3e
151 schema:familyName Yang
152 schema:givenName Jinzhong
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014731165631.01
154 rdf:type schema:Person
155 sg:person.015652571035.13 schema:affiliation grid-institutes:grid.455973.9
156 schema:familyName Chen
157 schema:givenName Cheng
158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015652571035.13
159 rdf:type schema:Person
160 sg:person.0645574161.79 schema:affiliation grid-institutes:grid.13402.34
161 schema:familyName Zeng
162 schema:givenName Lingzao
163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0645574161.79
164 rdf:type schema:Person
165 sg:pub.10.1007/978-1-4612-3094-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033094591
166 https://doi.org/10.1007/978-1-4612-3094-6
167 rdf:type schema:CreativeWork
168 sg:pub.10.1007/s00477-003-0154-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048479377
169 https://doi.org/10.1007/s00477-003-0154-4
170 rdf:type schema:CreativeWork
171 sg:pub.10.1007/s00477-006-0046-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013426386
172 https://doi.org/10.1007/s00477-006-0046-5
173 rdf:type schema:CreativeWork
174 sg:pub.10.1007/s00477-010-0400-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041561579
175 https://doi.org/10.1007/s00477-010-0400-5
176 rdf:type schema:CreativeWork
177 sg:pub.10.1007/s00477-011-0534-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007052251
178 https://doi.org/10.1007/s00477-011-0534-0
179 rdf:type schema:CreativeWork
180 sg:pub.10.1016/s1001-6058(08)60213-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029517090
181 https://doi.org/10.1016/s1001-6058(08)60213-9
182 rdf:type schema:CreativeWork
183 grid-institutes:grid.13402.34 schema:alternateName Institute of Soil and Water Resources and Environmental Science, Zhejiang University, No. 866 Yuhangtang Road, 310058, Hangzhou, Zhejiang, People’s Republic of China
184 schema:name Institute of Soil and Water Resources and Environmental Science, Zhejiang University, No. 866 Yuhangtang Road, 310058, Hangzhou, Zhejiang, People’s Republic of China
185 rdf:type schema:Organization
186 grid-institutes:grid.455973.9 schema:alternateName Production Enhancement, Halliburton, 77032, Houston, TX, USA
187 schema:name Production Enhancement, Halliburton, 77032, Houston, TX, USA
188 rdf:type schema:Organization
189 grid-institutes:grid.49470.3e schema:alternateName National Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, 430072, Wuhan, People’s Republic of China
190 schema:name National Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, 430072, Wuhan, People’s Republic of China
191 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...