Uncertainty quantification of contaminant transport and risk assessment with conditional stochastic collocation method View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2013-08

AUTHORS

Liangsheng Shi, Lingzao Zeng, Yunqing Tang, Cheng Chen, Jinzhong Yang

ABSTRACT

Solute transport prediction is always subject to uncertainty due to the scarcity of observation data. The data worth of limited measurements can be explored by conditional simulation. This paper presents an efficient approach for the conditional simulation of solute transport in a randomly heterogeneous aquifer. The conditioning conductivity field is parameterized by the Karhunen–Loève (KL) expansion, and the concentration field is represented by Lagrange polynomials of random variables in the KL expansion. After employing the stochastic collocation method (SCM), stochastic governing advection–dispersion equations are reduced to a series of uncoupled deterministic equations. The concentration realizations can be obtained by sampling the established Lagrange polynomials instead of solving governing equations repeatedly. We assess the accuracy and computational efficiency of this method in comparison to the conditional Monte Carlo simulation. The influence of conditioning to hydraulic conductivity measurements on transport is analyzed. Numerical results demonstrate that the SCM can efficiently derive the conditional statistics of concentration as well as the probability of the aquifer to be contaminated. It is shown that the contamination risk is significantly influenced by measurements conditioning. More... »

PAGES

1453-1464

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00477-012-0682-x

DOI

http://dx.doi.org/10.1007/s00477-012-0682-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1048198658


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Wuhan University", 
          "id": "https://www.grid.ac/institutes/grid.49470.3e", 
          "name": [
            "National Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, 430072, Wuhan, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shi", 
        "givenName": "Liangsheng", 
        "id": "sg:person.013753244525.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013753244525.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Zhejiang University", 
          "id": "https://www.grid.ac/institutes/grid.13402.34", 
          "name": [
            "Institute of Soil and Water Resources and Environmental Science, Zhejiang University, No. 866 Yuhangtang Road, 310058, Hangzhou, Zhejiang, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zeng", 
        "givenName": "Lingzao", 
        "id": "sg:person.0645574161.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0645574161.79"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Wuhan University", 
          "id": "https://www.grid.ac/institutes/grid.49470.3e", 
          "name": [
            "National Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, 430072, Wuhan, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tang", 
        "givenName": "Yunqing", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Halliburton (United States)", 
          "id": "https://www.grid.ac/institutes/grid.455973.9", 
          "name": [
            "Production Enhancement, Halliburton, 77032, Houston, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Cheng", 
        "id": "sg:person.015652571035.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015652571035.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Wuhan University", 
          "id": "https://www.grid.ac/institutes/grid.49470.3e", 
          "name": [
            "National Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, 430072, Wuhan, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Jinzhong", 
        "id": "sg:person.014731165631.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014731165631.01"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0309-1708(03)00045-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005194949"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0309-1708(03)00045-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005194949"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00477-011-0534-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007052251", 
          "https://doi.org/10.1007/s00477-011-0534-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.advwatres.2004.08.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007882054"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.advwatres.2006.01.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009336299"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/96wr00503", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010796691"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00477-006-0046-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013426386", 
          "https://doi.org/10.1007/s00477-006-0046-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00477-006-0046-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013426386", 
          "https://doi.org/10.1007/s00477-006-0046-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0309-1708(97)00033-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014799410"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcp.2010.05.036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016032511"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jcom.1995.1001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021684988"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcp.2009.10.043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023226954"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.advwatres.2011.09.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024961461"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2006wr005673", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026493242"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0309-1708(03)00106-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026503242"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0309-1708(03)00106-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026503242"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1016/s1001-6058(08)60213-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029517090", 
          "https://doi.org/10.1016/s1001-6058(08)60213-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-1694(97)00025-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030261250"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcp.2011.08.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031866914"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhydrol.2008.11.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032397751"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1033094591", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-3094-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033094591", 
          "https://doi.org/10.1007/978-1-4612-3094-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-3094-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033094591", 
          "https://doi.org/10.1007/978-1-4612-3094-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.advwatres.2011.09.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038021293"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00477-010-0400-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041561579", 
          "https://doi.org/10.1007/s00477-010-0400-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00477-010-0400-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041561579", 
          "https://doi.org/10.1007/s00477-010-0400-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.advwatres.2008.09.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041869439"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-4730(90)90001-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041938737"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-4730(90)90001-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041938737"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcp.2006.12.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043998082"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00477-003-0154-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048479377", 
          "https://doi.org/10.1007/s00477-003-0154-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jconhyd.2008.10.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050209674"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2008wr007530", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050895667"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/040615201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062845261"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/070680540", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062850854"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-08", 
    "datePublishedReg": "2013-08-01", 
    "description": "Solute transport prediction is always subject to uncertainty due to the scarcity of observation data. The data worth of limited measurements can be explored by conditional simulation. This paper presents an efficient approach for the conditional simulation of solute transport in a randomly heterogeneous aquifer. The conditioning conductivity field is parameterized by the Karhunen\u2013Lo\u00e8ve (KL) expansion, and the concentration field is represented by Lagrange polynomials of random variables in the KL expansion. After employing the stochastic collocation method (SCM), stochastic governing advection\u2013dispersion equations are reduced to a series of uncoupled deterministic equations. The concentration realizations can be obtained by sampling the established Lagrange polynomials instead of solving governing equations repeatedly. We assess the accuracy and computational efficiency of this method in comparison to the conditional Monte Carlo simulation. The influence of conditioning to hydraulic conductivity measurements on transport is analyzed. Numerical results demonstrate that the SCM can efficiently derive the conditional statistics of concentration as well as the probability of the aquifer to be contaminated. It is shown that the contamination risk is significantly influenced by measurements conditioning.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00477-012-0682-x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.7184287", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.6977970", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.7009352", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.4994897", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1039987", 
        "issn": [
          "1436-3240", 
          "1436-3259"
        ], 
        "name": "Stochastic Environmental Research and Risk Assessment", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "27"
      }
    ], 
    "name": "Uncertainty quantification of contaminant transport and risk assessment with conditional stochastic collocation method", 
    "pagination": "1453-1464", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e59ccec5b131e25d9781deca09ca7a33ec0275a1eb7f7a9237f39e4089b24f4a"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00477-012-0682-x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1048198658"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00477-012-0682-x", 
      "https://app.dimensions.ai/details/publication/pub.1048198658"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T01:08", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000516.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00477-012-0682-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00477-012-0682-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00477-012-0682-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00477-012-0682-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00477-012-0682-x'


 

This table displays all metadata directly associated to this object as RDF triples.

194 TRIPLES      21 PREDICATES      56 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00477-012-0682-x schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author Nbb971eafc46c45a7a381afc98f561f96
4 schema:citation sg:pub.10.1007/978-1-4612-3094-6
5 sg:pub.10.1007/s00477-003-0154-4
6 sg:pub.10.1007/s00477-006-0046-5
7 sg:pub.10.1007/s00477-010-0400-5
8 sg:pub.10.1007/s00477-011-0534-0
9 sg:pub.10.1016/s1001-6058(08)60213-9
10 https://app.dimensions.ai/details/publication/pub.1033094591
11 https://doi.org/10.1006/jcom.1995.1001
12 https://doi.org/10.1016/0167-4730(90)90001-6
13 https://doi.org/10.1016/j.advwatres.2004.08.001
14 https://doi.org/10.1016/j.advwatres.2006.01.006
15 https://doi.org/10.1016/j.advwatres.2008.09.003
16 https://doi.org/10.1016/j.advwatres.2011.09.005
17 https://doi.org/10.1016/j.advwatres.2011.09.011
18 https://doi.org/10.1016/j.jconhyd.2008.10.012
19 https://doi.org/10.1016/j.jcp.2006.12.014
20 https://doi.org/10.1016/j.jcp.2009.10.043
21 https://doi.org/10.1016/j.jcp.2010.05.036
22 https://doi.org/10.1016/j.jcp.2011.08.008
23 https://doi.org/10.1016/j.jhydrol.2008.11.012
24 https://doi.org/10.1016/s0022-1694(97)00025-5
25 https://doi.org/10.1016/s0309-1708(03)00045-9
26 https://doi.org/10.1016/s0309-1708(03)00106-4
27 https://doi.org/10.1016/s0309-1708(97)00033-x
28 https://doi.org/10.1029/2006wr005673
29 https://doi.org/10.1029/2008wr007530
30 https://doi.org/10.1029/96wr00503
31 https://doi.org/10.1137/040615201
32 https://doi.org/10.1137/070680540
33 schema:datePublished 2013-08
34 schema:datePublishedReg 2013-08-01
35 schema:description Solute transport prediction is always subject to uncertainty due to the scarcity of observation data. The data worth of limited measurements can be explored by conditional simulation. This paper presents an efficient approach for the conditional simulation of solute transport in a randomly heterogeneous aquifer. The conditioning conductivity field is parameterized by the Karhunen–Loève (KL) expansion, and the concentration field is represented by Lagrange polynomials of random variables in the KL expansion. After employing the stochastic collocation method (SCM), stochastic governing advection–dispersion equations are reduced to a series of uncoupled deterministic equations. The concentration realizations can be obtained by sampling the established Lagrange polynomials instead of solving governing equations repeatedly. We assess the accuracy and computational efficiency of this method in comparison to the conditional Monte Carlo simulation. The influence of conditioning to hydraulic conductivity measurements on transport is analyzed. Numerical results demonstrate that the SCM can efficiently derive the conditional statistics of concentration as well as the probability of the aquifer to be contaminated. It is shown that the contamination risk is significantly influenced by measurements conditioning.
36 schema:genre research_article
37 schema:inLanguage en
38 schema:isAccessibleForFree false
39 schema:isPartOf Nc9e2819b5f4d4f30a8ebf57f8da74c70
40 Ne081c4d5c7e545c091d5e7d1c3f76fe9
41 sg:journal.1039987
42 schema:name Uncertainty quantification of contaminant transport and risk assessment with conditional stochastic collocation method
43 schema:pagination 1453-1464
44 schema:productId N15b677dbf3df4d1aa65dd423e579f607
45 Naa4b14721b0843d0bf9f1595f9b8d378
46 Ndd6e0153432641709b2a3ed0fb44788d
47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048198658
48 https://doi.org/10.1007/s00477-012-0682-x
49 schema:sdDatePublished 2019-04-11T01:08
50 schema:sdLicense https://scigraph.springernature.com/explorer/license/
51 schema:sdPublisher Na9b21539eb99446ca9f37af6d4244de5
52 schema:url http://link.springer.com/10.1007%2Fs00477-012-0682-x
53 sgo:license sg:explorer/license/
54 sgo:sdDataset articles
55 rdf:type schema:ScholarlyArticle
56 N0725e09c355e47e38c5ca1b5423c08be rdf:first N264e8ac3430742feaf157c3c78d71879
57 rdf:rest Ncd4141010001473b9c446d01c6ab97b3
58 N15b677dbf3df4d1aa65dd423e579f607 schema:name dimensions_id
59 schema:value pub.1048198658
60 rdf:type schema:PropertyValue
61 N264e8ac3430742feaf157c3c78d71879 schema:affiliation https://www.grid.ac/institutes/grid.49470.3e
62 schema:familyName Tang
63 schema:givenName Yunqing
64 rdf:type schema:Person
65 Na9b21539eb99446ca9f37af6d4244de5 schema:name Springer Nature - SN SciGraph project
66 rdf:type schema:Organization
67 Naa4b14721b0843d0bf9f1595f9b8d378 schema:name readcube_id
68 schema:value e59ccec5b131e25d9781deca09ca7a33ec0275a1eb7f7a9237f39e4089b24f4a
69 rdf:type schema:PropertyValue
70 Nbb971eafc46c45a7a381afc98f561f96 rdf:first sg:person.013753244525.37
71 rdf:rest Nc0a6f9663db1453d89fdec3cabb5a5d5
72 Nc0a6f9663db1453d89fdec3cabb5a5d5 rdf:first sg:person.0645574161.79
73 rdf:rest N0725e09c355e47e38c5ca1b5423c08be
74 Nc9e2819b5f4d4f30a8ebf57f8da74c70 schema:volumeNumber 27
75 rdf:type schema:PublicationVolume
76 Ncd4141010001473b9c446d01c6ab97b3 rdf:first sg:person.015652571035.13
77 rdf:rest Ndb3abfe80f744e579e0ee789afd2808f
78 Ndb3abfe80f744e579e0ee789afd2808f rdf:first sg:person.014731165631.01
79 rdf:rest rdf:nil
80 Ndd6e0153432641709b2a3ed0fb44788d schema:name doi
81 schema:value 10.1007/s00477-012-0682-x
82 rdf:type schema:PropertyValue
83 Ne081c4d5c7e545c091d5e7d1c3f76fe9 schema:issueNumber 6
84 rdf:type schema:PublicationIssue
85 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
86 schema:name Mathematical Sciences
87 rdf:type schema:DefinedTerm
88 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
89 schema:name Statistics
90 rdf:type schema:DefinedTerm
91 sg:grant.4994897 http://pending.schema.org/fundedItem sg:pub.10.1007/s00477-012-0682-x
92 rdf:type schema:MonetaryGrant
93 sg:grant.6977970 http://pending.schema.org/fundedItem sg:pub.10.1007/s00477-012-0682-x
94 rdf:type schema:MonetaryGrant
95 sg:grant.7009352 http://pending.schema.org/fundedItem sg:pub.10.1007/s00477-012-0682-x
96 rdf:type schema:MonetaryGrant
97 sg:grant.7184287 http://pending.schema.org/fundedItem sg:pub.10.1007/s00477-012-0682-x
98 rdf:type schema:MonetaryGrant
99 sg:journal.1039987 schema:issn 1436-3240
100 1436-3259
101 schema:name Stochastic Environmental Research and Risk Assessment
102 rdf:type schema:Periodical
103 sg:person.013753244525.37 schema:affiliation https://www.grid.ac/institutes/grid.49470.3e
104 schema:familyName Shi
105 schema:givenName Liangsheng
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013753244525.37
107 rdf:type schema:Person
108 sg:person.014731165631.01 schema:affiliation https://www.grid.ac/institutes/grid.49470.3e
109 schema:familyName Yang
110 schema:givenName Jinzhong
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014731165631.01
112 rdf:type schema:Person
113 sg:person.015652571035.13 schema:affiliation https://www.grid.ac/institutes/grid.455973.9
114 schema:familyName Chen
115 schema:givenName Cheng
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015652571035.13
117 rdf:type schema:Person
118 sg:person.0645574161.79 schema:affiliation https://www.grid.ac/institutes/grid.13402.34
119 schema:familyName Zeng
120 schema:givenName Lingzao
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0645574161.79
122 rdf:type schema:Person
123 sg:pub.10.1007/978-1-4612-3094-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033094591
124 https://doi.org/10.1007/978-1-4612-3094-6
125 rdf:type schema:CreativeWork
126 sg:pub.10.1007/s00477-003-0154-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048479377
127 https://doi.org/10.1007/s00477-003-0154-4
128 rdf:type schema:CreativeWork
129 sg:pub.10.1007/s00477-006-0046-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013426386
130 https://doi.org/10.1007/s00477-006-0046-5
131 rdf:type schema:CreativeWork
132 sg:pub.10.1007/s00477-010-0400-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041561579
133 https://doi.org/10.1007/s00477-010-0400-5
134 rdf:type schema:CreativeWork
135 sg:pub.10.1007/s00477-011-0534-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007052251
136 https://doi.org/10.1007/s00477-011-0534-0
137 rdf:type schema:CreativeWork
138 sg:pub.10.1016/s1001-6058(08)60213-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029517090
139 https://doi.org/10.1016/s1001-6058(08)60213-9
140 rdf:type schema:CreativeWork
141 https://app.dimensions.ai/details/publication/pub.1033094591 schema:CreativeWork
142 https://doi.org/10.1006/jcom.1995.1001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021684988
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/0167-4730(90)90001-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041938737
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/j.advwatres.2004.08.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007882054
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/j.advwatres.2006.01.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009336299
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/j.advwatres.2008.09.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041869439
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/j.advwatres.2011.09.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024961461
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1016/j.advwatres.2011.09.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038021293
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1016/j.jconhyd.2008.10.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050209674
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/j.jcp.2006.12.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043998082
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1016/j.jcp.2009.10.043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023226954
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1016/j.jcp.2010.05.036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016032511
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1016/j.jcp.2011.08.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031866914
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1016/j.jhydrol.2008.11.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032397751
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1016/s0022-1694(97)00025-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030261250
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1016/s0309-1708(03)00045-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005194949
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1016/s0309-1708(03)00106-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026503242
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1016/s0309-1708(97)00033-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1014799410
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1029/2006wr005673 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026493242
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1029/2008wr007530 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050895667
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1029/96wr00503 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010796691
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1137/040615201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062845261
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1137/070680540 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062850854
185 rdf:type schema:CreativeWork
186 https://www.grid.ac/institutes/grid.13402.34 schema:alternateName Zhejiang University
187 schema:name Institute of Soil and Water Resources and Environmental Science, Zhejiang University, No. 866 Yuhangtang Road, 310058, Hangzhou, Zhejiang, People’s Republic of China
188 rdf:type schema:Organization
189 https://www.grid.ac/institutes/grid.455973.9 schema:alternateName Halliburton (United States)
190 schema:name Production Enhancement, Halliburton, 77032, Houston, TX, USA
191 rdf:type schema:Organization
192 https://www.grid.ac/institutes/grid.49470.3e schema:alternateName Wuhan University
193 schema:name National Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, 430072, Wuhan, People’s Republic of China
194 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...