Assimilating transient groundwater flow data via a localized ensemble Kalman filter to calibrate a heterogeneous conductivity field View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2012-03

AUTHORS

Juxiu Tong, Bill X. Hu, Jinzhong Yang

ABSTRACT

A localized ensemble Kalman filter (EnKF) method is developed to assimilate transient flow data to calibrate a heterogeneous conductivity field. To update conductivity value at a point in a study domain, instead of assimilating all the measurements in the study domain, only limited measurement data in an area around the point are used for the conductivity updating in the localized EnKF method. The localized EnKF is proposed to solve the problems of the filter divergence usually existing in a data assimilation method without localization. The developed method is applied, in a synthetical two dimensional case, to calibrate a heterogeneous conductivity field by assimilating transient hydraulic head data. The simulations by the data assimilation with and without localized EnKF are compared. The study results indicate that the hydraulic conductivity field can be updated efficiently by the localized EnKF, while it cannot be by the EnKF. The covariance inflation and localization are found to solve the problem of the filter divergence efficiently. In comparison with the EnKF method without localization, the localized EnKF method needs smaller ensemble size to achieve stabilized results. The simulation results by the localized EnKF method are much more sensitive to conductivity correlation length than to the localization radius. The developed localized EnKF method provides an approach to improve EnKF method in conductivity calibration. More... »

PAGES

467-478

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00477-011-0534-0

DOI

http://dx.doi.org/10.1007/s00477-011-0534-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1007052251


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Wuhan University", 
          "id": "https://www.grid.ac/institutes/grid.49470.3e", 
          "name": [
            "Collage of Water Resources and Environmental Sciences, China University of Geosciences, 100083, Beijing, China", 
            "Department of Earth, Ocean & Atmospheric Sciences, 108 Carraway Building, Florida State University, 32306, Tallahassee, FL, USA", 
            "State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, 430072, Wuhan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tong", 
        "givenName": "Juxiu", 
        "id": "sg:person.010314752347.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010314752347.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Florida State University", 
          "id": "https://www.grid.ac/institutes/grid.255986.5", 
          "name": [
            "Collage of Water Resources and Environmental Sciences, China University of Geosciences, 100083, Beijing, China", 
            "Department of Earth, Ocean & Atmospheric Sciences, 108 Carraway Building, Florida State University, 32306, Tallahassee, FL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hu", 
        "givenName": "Bill X.", 
        "id": "sg:person.012556140447.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012556140447.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Wuhan University", 
          "id": "https://www.grid.ac/institutes/grid.49470.3e", 
          "name": [
            "State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, 430072, Wuhan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Jinzhong", 
        "id": "sg:person.014731165631.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014731165631.01"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1175/1520-0493(1992)120<1747:tnmcss>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002851820"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0493(2001)129<0123:asekff>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003512466"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/94jc00572", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006005755"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0493(2001)129<2884:aeakff>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008318028"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhydrol.2008.11.033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009885398"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1600-0870.2007.00261.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010959001"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0493(1998)126<1719:asitek>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012328057"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0493(2000)128<2905:ahekfv>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012721151"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0493(1992)120<1433:vdawaa>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015289991"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/qj.49712455005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016607625"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmva.2006.08.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017692481"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0493(2001)129<2776:ddfobe>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019367276"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.advwatres.2009.10.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020151515"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/qj.443", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021797514"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/qj.443", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021797514"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2004rg000163", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025183749"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2004rg000163", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025183749"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00477-010-0392-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029308599", 
          "https://doi.org/10.1007/s00477-010-0392-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00477-010-0392-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029308599", 
          "https://doi.org/10.1007/s00477-010-0392-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00477-008-0289-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029417657", 
          "https://doi.org/10.1007/s00477-008-0289-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00477-008-0289-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029417657", 
          "https://doi.org/10.1007/s00477-008-0289-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.advwatres.2005.09.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030821237"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1600-0870.1986.tb00459.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030933961"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1600-0870.1986.tb00459.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030933961"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0493(1999)127<2741:amciot>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035567723"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/2009mwr3017.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045419106"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1600-0870.2006.00216.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045515848"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-72584-8_134", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046782419", 
          "https://doi.org/10.1007/978-3-540-72584-8_134"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/wr022i002p00095", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047459139"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/mcs.2009.932223", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061397624"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2118/95789-pa", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068962947"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2151/jmsj1965.75.1b_257", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084936175"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2118/118963-ms", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1096974180"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2118/106144-ms", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1096975672"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511535642", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098668622"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-03", 
    "datePublishedReg": "2012-03-01", 
    "description": "A localized ensemble Kalman filter (EnKF) method is developed to assimilate transient flow data to calibrate a heterogeneous conductivity field. To update conductivity value at a point in a study domain, instead of assimilating all the measurements in the study domain, only limited measurement data in an area around the point are used for the conductivity updating in the localized EnKF method. The localized EnKF is proposed to solve the problems of the filter divergence usually existing in a data assimilation method without localization. The developed method is applied, in a synthetical two dimensional case, to calibrate a heterogeneous conductivity field by assimilating transient hydraulic head data. The simulations by the data assimilation with and without localized EnKF are compared. The study results indicate that the hydraulic conductivity field can be updated efficiently by the localized EnKF, while it cannot be by the EnKF. The covariance inflation and localization are found to solve the problem of the filter divergence efficiently. In comparison with the EnKF method without localization, the localized EnKF method needs smaller ensemble size to achieve stabilized results. The simulation results by the localized EnKF method are much more sensitive to conductivity correlation length than to the localization radius. The developed localized EnKF method provides an approach to improve EnKF method in conductivity calibration.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00477-011-0534-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.5004303", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1039987", 
        "issn": [
          "1436-3240", 
          "1436-3259"
        ], 
        "name": "Stochastic Environmental Research and Risk Assessment", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "26"
      }
    ], 
    "name": "Assimilating transient groundwater flow data via a localized ensemble Kalman filter to calibrate a heterogeneous conductivity field", 
    "pagination": "467-478", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "2197e27d51bb5c513fc0502e84e5421745143fad340a15cb9b01826690a3054a"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00477-011-0534-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1007052251"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00477-011-0534-0", 
      "https://app.dimensions.ai/details/publication/pub.1007052251"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T17:31", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000510.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00477-011-0534-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00477-011-0534-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00477-011-0534-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00477-011-0534-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00477-011-0534-0'


 

This table displays all metadata directly associated to this object as RDF triples.

176 TRIPLES      21 PREDICATES      57 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00477-011-0534-0 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N684ea6367c4043c5918260701c2e8bbd
4 schema:citation sg:pub.10.1007/978-3-540-72584-8_134
5 sg:pub.10.1007/s00477-008-0289-4
6 sg:pub.10.1007/s00477-010-0392-1
7 https://doi.org/10.1002/qj.443
8 https://doi.org/10.1002/qj.49712455005
9 https://doi.org/10.1016/j.advwatres.2005.09.007
10 https://doi.org/10.1016/j.advwatres.2009.10.001
11 https://doi.org/10.1016/j.jhydrol.2008.11.033
12 https://doi.org/10.1016/j.jmva.2006.08.003
13 https://doi.org/10.1017/cbo9780511535642
14 https://doi.org/10.1029/2004rg000163
15 https://doi.org/10.1029/94jc00572
16 https://doi.org/10.1029/wr022i002p00095
17 https://doi.org/10.1109/mcs.2009.932223
18 https://doi.org/10.1111/j.1600-0870.1986.tb00459.x
19 https://doi.org/10.1111/j.1600-0870.2006.00216.x
20 https://doi.org/10.1111/j.1600-0870.2007.00261.x
21 https://doi.org/10.1175/1520-0493(1992)120<1433:vdawaa>2.0.co;2
22 https://doi.org/10.1175/1520-0493(1992)120<1747:tnmcss>2.0.co;2
23 https://doi.org/10.1175/1520-0493(1998)126<1719:asitek>2.0.co;2
24 https://doi.org/10.1175/1520-0493(1999)127<2741:amciot>2.0.co;2
25 https://doi.org/10.1175/1520-0493(2000)128<2905:ahekfv>2.0.co;2
26 https://doi.org/10.1175/1520-0493(2001)129<0123:asekff>2.0.co;2
27 https://doi.org/10.1175/1520-0493(2001)129<2776:ddfobe>2.0.co;2
28 https://doi.org/10.1175/1520-0493(2001)129<2884:aeakff>2.0.co;2
29 https://doi.org/10.1175/2009mwr3017.1
30 https://doi.org/10.2118/106144-ms
31 https://doi.org/10.2118/118963-ms
32 https://doi.org/10.2118/95789-pa
33 https://doi.org/10.2151/jmsj1965.75.1b_257
34 schema:datePublished 2012-03
35 schema:datePublishedReg 2012-03-01
36 schema:description A localized ensemble Kalman filter (EnKF) method is developed to assimilate transient flow data to calibrate a heterogeneous conductivity field. To update conductivity value at a point in a study domain, instead of assimilating all the measurements in the study domain, only limited measurement data in an area around the point are used for the conductivity updating in the localized EnKF method. The localized EnKF is proposed to solve the problems of the filter divergence usually existing in a data assimilation method without localization. The developed method is applied, in a synthetical two dimensional case, to calibrate a heterogeneous conductivity field by assimilating transient hydraulic head data. The simulations by the data assimilation with and without localized EnKF are compared. The study results indicate that the hydraulic conductivity field can be updated efficiently by the localized EnKF, while it cannot be by the EnKF. The covariance inflation and localization are found to solve the problem of the filter divergence efficiently. In comparison with the EnKF method without localization, the localized EnKF method needs smaller ensemble size to achieve stabilized results. The simulation results by the localized EnKF method are much more sensitive to conductivity correlation length than to the localization radius. The developed localized EnKF method provides an approach to improve EnKF method in conductivity calibration.
37 schema:genre research_article
38 schema:inLanguage en
39 schema:isAccessibleForFree false
40 schema:isPartOf N9e3da0dc1d67420c8b053cd09cd1c8a6
41 Nf98601a2f0e34701b9dd49d9999cff8f
42 sg:journal.1039987
43 schema:name Assimilating transient groundwater flow data via a localized ensemble Kalman filter to calibrate a heterogeneous conductivity field
44 schema:pagination 467-478
45 schema:productId N37d8b4610de343ce945b4665a794978f
46 N58accecfcbe644d0903211ab4cace3c1
47 Nc8216b8128134b53b0ea8f4002771b4e
48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007052251
49 https://doi.org/10.1007/s00477-011-0534-0
50 schema:sdDatePublished 2019-04-10T17:31
51 schema:sdLicense https://scigraph.springernature.com/explorer/license/
52 schema:sdPublisher N6fd041a5bb8b4abfb1afb735682a01df
53 schema:url http://link.springer.com/10.1007%2Fs00477-011-0534-0
54 sgo:license sg:explorer/license/
55 sgo:sdDataset articles
56 rdf:type schema:ScholarlyArticle
57 N2dda8f6c610748e3af939b21d0d19805 rdf:first sg:person.012556140447.41
58 rdf:rest N9256456afd2a419db3f2fced58720b35
59 N37d8b4610de343ce945b4665a794978f schema:name doi
60 schema:value 10.1007/s00477-011-0534-0
61 rdf:type schema:PropertyValue
62 N58accecfcbe644d0903211ab4cace3c1 schema:name readcube_id
63 schema:value 2197e27d51bb5c513fc0502e84e5421745143fad340a15cb9b01826690a3054a
64 rdf:type schema:PropertyValue
65 N684ea6367c4043c5918260701c2e8bbd rdf:first sg:person.010314752347.24
66 rdf:rest N2dda8f6c610748e3af939b21d0d19805
67 N6fd041a5bb8b4abfb1afb735682a01df schema:name Springer Nature - SN SciGraph project
68 rdf:type schema:Organization
69 N9256456afd2a419db3f2fced58720b35 rdf:first sg:person.014731165631.01
70 rdf:rest rdf:nil
71 N9e3da0dc1d67420c8b053cd09cd1c8a6 schema:volumeNumber 26
72 rdf:type schema:PublicationVolume
73 Nc8216b8128134b53b0ea8f4002771b4e schema:name dimensions_id
74 schema:value pub.1007052251
75 rdf:type schema:PropertyValue
76 Nf98601a2f0e34701b9dd49d9999cff8f schema:issueNumber 3
77 rdf:type schema:PublicationIssue
78 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
79 schema:name Information and Computing Sciences
80 rdf:type schema:DefinedTerm
81 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
82 schema:name Artificial Intelligence and Image Processing
83 rdf:type schema:DefinedTerm
84 sg:grant.5004303 http://pending.schema.org/fundedItem sg:pub.10.1007/s00477-011-0534-0
85 rdf:type schema:MonetaryGrant
86 sg:journal.1039987 schema:issn 1436-3240
87 1436-3259
88 schema:name Stochastic Environmental Research and Risk Assessment
89 rdf:type schema:Periodical
90 sg:person.010314752347.24 schema:affiliation https://www.grid.ac/institutes/grid.49470.3e
91 schema:familyName Tong
92 schema:givenName Juxiu
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010314752347.24
94 rdf:type schema:Person
95 sg:person.012556140447.41 schema:affiliation https://www.grid.ac/institutes/grid.255986.5
96 schema:familyName Hu
97 schema:givenName Bill X.
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012556140447.41
99 rdf:type schema:Person
100 sg:person.014731165631.01 schema:affiliation https://www.grid.ac/institutes/grid.49470.3e
101 schema:familyName Yang
102 schema:givenName Jinzhong
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014731165631.01
104 rdf:type schema:Person
105 sg:pub.10.1007/978-3-540-72584-8_134 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046782419
106 https://doi.org/10.1007/978-3-540-72584-8_134
107 rdf:type schema:CreativeWork
108 sg:pub.10.1007/s00477-008-0289-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029417657
109 https://doi.org/10.1007/s00477-008-0289-4
110 rdf:type schema:CreativeWork
111 sg:pub.10.1007/s00477-010-0392-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029308599
112 https://doi.org/10.1007/s00477-010-0392-1
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1002/qj.443 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021797514
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1002/qj.49712455005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016607625
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/j.advwatres.2005.09.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030821237
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/j.advwatres.2009.10.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020151515
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/j.jhydrol.2008.11.033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009885398
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/j.jmva.2006.08.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017692481
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1017/cbo9780511535642 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098668622
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1029/2004rg000163 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025183749
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1029/94jc00572 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006005755
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1029/wr022i002p00095 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047459139
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1109/mcs.2009.932223 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061397624
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1111/j.1600-0870.1986.tb00459.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1030933961
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1111/j.1600-0870.2006.00216.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1045515848
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1111/j.1600-0870.2007.00261.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1010959001
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1175/1520-0493(1992)120<1433:vdawaa>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015289991
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1175/1520-0493(1992)120<1747:tnmcss>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002851820
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1175/1520-0493(1998)126<1719:asitek>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012328057
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1175/1520-0493(1999)127<2741:amciot>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035567723
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1175/1520-0493(2000)128<2905:ahekfv>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012721151
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1175/1520-0493(2001)129<0123:asekff>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003512466
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1175/1520-0493(2001)129<2776:ddfobe>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019367276
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1175/1520-0493(2001)129<2884:aeakff>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008318028
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1175/2009mwr3017.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045419106
159 rdf:type schema:CreativeWork
160 https://doi.org/10.2118/106144-ms schema:sameAs https://app.dimensions.ai/details/publication/pub.1096975672
161 rdf:type schema:CreativeWork
162 https://doi.org/10.2118/118963-ms schema:sameAs https://app.dimensions.ai/details/publication/pub.1096974180
163 rdf:type schema:CreativeWork
164 https://doi.org/10.2118/95789-pa schema:sameAs https://app.dimensions.ai/details/publication/pub.1068962947
165 rdf:type schema:CreativeWork
166 https://doi.org/10.2151/jmsj1965.75.1b_257 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084936175
167 rdf:type schema:CreativeWork
168 https://www.grid.ac/institutes/grid.255986.5 schema:alternateName Florida State University
169 schema:name Collage of Water Resources and Environmental Sciences, China University of Geosciences, 100083, Beijing, China
170 Department of Earth, Ocean & Atmospheric Sciences, 108 Carraway Building, Florida State University, 32306, Tallahassee, FL, USA
171 rdf:type schema:Organization
172 https://www.grid.ac/institutes/grid.49470.3e schema:alternateName Wuhan University
173 schema:name Collage of Water Resources and Environmental Sciences, China University of Geosciences, 100083, Beijing, China
174 Department of Earth, Ocean & Atmospheric Sciences, 108 Carraway Building, Florida State University, 32306, Tallahassee, FL, USA
175 State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, 430072, Wuhan, China
176 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...