A comparative study of numerical approaches to risk assessment of contaminant transport View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2010-10

AUTHORS

Dongxiao Zhang, Liangsheng Shi, Haibin Chang, Jinzhong Yang

ABSTRACT

In risk analysis, a complete characterization of the concentration distribution is necessary to determine the probability of exceeding a threshold value. The most popular method for predicting concentration distribution is Monte Carlo simulation, which samples the cumulative distribution function with a large number of repeated operations. In this paper, we first review three most commonly used Monte Carlo (MC) techniques: the standard Monte Carlo, Latin Hypercube sampling, and Quasi Monte Carlo. The performance of these three MC approaches is investigated. We then apply stochastic collocation method (SCM) to risk assessment. Unlike the MC simulations, the SCM does not require a large number of simulations of flow and solute equations. In particular, the sparse grid collocation method and probabilistic collocation method are employed to represent the concentration in terms of polynomials and unknown coefficients. The sparse grid collocation method takes advantage of Lagrange interpolation polynomials while the probabilistic collocation method relies on polynomials chaos expansions. In both methods, the stochastic equations are reduced to a system of decoupled equations, which can be solved with existing solvers and whose results are used to obtain the expansion coefficients. Then the cumulative distribution function is obtained by sampling the approximate polynomials. Our synthetic examples show that among the MC methods, the Quasi Monte Carlo gives the smallest variance for the predicted threshold probability due to its superior convergence property and that the stochastic collocation method is an accurate and efficient alternative to MC simulations. More... »

PAGES

971-984

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00477-010-0400-5

DOI

http://dx.doi.org/10.1007/s00477-010-0400-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1041561579


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Southern California", 
          "id": "https://www.grid.ac/institutes/grid.42505.36", 
          "name": [
            "Department of Energy and Resources Engineering, College of Engineering, Peking University, 100871, Beijing, China", 
            "The Sonny Astani Department of Civil and Environmental Engineering, University of Southern California, 90089, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Dongxiao", 
        "id": "sg:person.015224204657.60", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015224204657.60"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Wuhan University", 
          "id": "https://www.grid.ac/institutes/grid.49470.3e", 
          "name": [
            "The Sonny Astani Department of Civil and Environmental Engineering, University of Southern California, 90089, Los Angeles, CA, USA", 
            "National Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, 430072, Wuhan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shi", 
        "givenName": "Liangsheng", 
        "id": "sg:person.013753244525.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013753244525.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Southern California", 
          "id": "https://www.grid.ac/institutes/grid.42505.36", 
          "name": [
            "Department of Energy and Resources Engineering, College of Engineering, Peking University, 100871, Beijing, China", 
            "The Sonny Astani Department of Civil and Environmental Engineering, University of Southern California, 90089, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chang", 
        "givenName": "Haibin", 
        "id": "sg:person.011315666337.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011315666337.64"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Wuhan University", 
          "id": "https://www.grid.ac/institutes/grid.49470.3e", 
          "name": [
            "National Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, 430072, Wuhan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Jinzhong", 
        "id": "sg:person.014731165631.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014731165631.01"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s004770050030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000592396", 
          "https://doi.org/10.1007/s004770050030"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00477-004-0209-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002482106", 
          "https://doi.org/10.1007/s00477-004-0209-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/97wr00803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002630379"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.probengmech.2006.11.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005612858"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2001wr000678", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007984309"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1015744421033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009076703", 
          "https://doi.org/10.1023/a:1015744421033"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/97wr01704", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009909031"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcp.2003.09.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012117048"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/97jd01654", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013016083"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00477-008-0261-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014678683", 
          "https://doi.org/10.1007/s00477-008-0261-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00477-008-0261-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014678683", 
          "https://doi.org/10.1007/s00477-008-0261-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/96wr01335", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015779685"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jcph.1995.1209", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020195501"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jcom.1995.1001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021684988"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2000wr900245", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023050870"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/wr018i004p00835", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023174196"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/91wr00241", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026195433"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2006wr005673", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026493242"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0309-1708(03)00106-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026503242"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0309-1708(03)00106-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026503242"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11242-004-1119-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026606361", 
          "https://doi.org/10.1007/s11242-004-1119-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhydrol.2008.11.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032397751"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1033094591", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-3094-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033094591", 
          "https://doi.org/10.1007/978-1-4612-3094-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-3094-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033094591", 
          "https://doi.org/10.1007/978-1-4612-3094-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cma.2007.04.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033478254"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jconhyd.2007.05.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036800404"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/94wr00872", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040433699"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/94wr01489", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042914660"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcp.2006.12.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043998082"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhydrol.2004.10.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046730476"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apnum.2007.09.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047766222"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00477-005-0025-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052377878", 
          "https://doi.org/10.1007/s00477-005-0025-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00477-005-0025-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052377878", 
          "https://doi.org/10.1007/s00477-005-0025-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/5.265353", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061179139"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/040615201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062845261"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/050645142", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062846717"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/060657418", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062849287"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/060663660", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062849502"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0915077", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062857684"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s0036144502417715", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062877798"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s1064827501387826", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062883896"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1268522", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069420824"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1969178", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069674572"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/1.9781611970081", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098552246"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-10", 
    "datePublishedReg": "2010-10-01", 
    "description": "In risk analysis, a complete characterization of the concentration distribution is necessary to determine the probability of exceeding a threshold value. The most popular method for predicting concentration distribution is Monte Carlo simulation, which samples the cumulative distribution function with a large number of repeated operations. In this paper, we first review three most commonly used Monte Carlo (MC) techniques: the standard Monte Carlo, Latin Hypercube sampling, and Quasi Monte Carlo. The performance of these three MC approaches is investigated. We then apply stochastic collocation method (SCM) to risk assessment. Unlike the MC simulations, the SCM does not require a large number of simulations of flow and solute equations. In particular, the sparse grid collocation method and probabilistic collocation method are employed to represent the concentration in terms of polynomials and unknown coefficients. The sparse grid collocation method takes advantage of Lagrange interpolation polynomials while the probabilistic collocation method relies on polynomials chaos expansions. In both methods, the stochastic equations are reduced to a system of decoupled equations, which can be solved with existing solvers and whose results are used to obtain the expansion coefficients. Then the cumulative distribution function is obtained by sampling the approximate polynomials. Our synthetic examples show that among the MC methods, the Quasi Monte Carlo gives the smallest variance for the predicted threshold probability due to its superior convergence property and that the stochastic collocation method is an accurate and efficient alternative to MC simulations.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00477-010-0400-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.4955356", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.4985369", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1039987", 
        "issn": [
          "1436-3240", 
          "1436-3259"
        ], 
        "name": "Stochastic Environmental Research and Risk Assessment", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "24"
      }
    ], 
    "name": "A comparative study of numerical approaches to risk assessment of contaminant transport", 
    "pagination": "971-984", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "c5fc541d33e7deaf929e5dcf46c69059e3b093ce3e6f24e7441cf143ce6fabb4"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00477-010-0400-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1041561579"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00477-010-0400-5", 
      "https://app.dimensions.ai/details/publication/pub.1041561579"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:36", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000349_0000000349/records_113670_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00477-010-0400-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00477-010-0400-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00477-010-0400-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00477-010-0400-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00477-010-0400-5'


 

This table displays all metadata directly associated to this object as RDF triples.

220 TRIPLES      21 PREDICATES      68 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00477-010-0400-5 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author Nf2908bfdd1524a12bbb74b175f1438a7
4 schema:citation sg:pub.10.1007/978-1-4612-3094-6
5 sg:pub.10.1007/s00477-004-0209-1
6 sg:pub.10.1007/s00477-005-0025-2
7 sg:pub.10.1007/s00477-008-0261-3
8 sg:pub.10.1007/s004770050030
9 sg:pub.10.1007/s11242-004-1119-x
10 sg:pub.10.1023/a:1015744421033
11 https://app.dimensions.ai/details/publication/pub.1033094591
12 https://doi.org/10.1006/jcom.1995.1001
13 https://doi.org/10.1006/jcph.1995.1209
14 https://doi.org/10.1016/j.apnum.2007.09.004
15 https://doi.org/10.1016/j.cma.2007.04.005
16 https://doi.org/10.1016/j.jconhyd.2007.05.005
17 https://doi.org/10.1016/j.jcp.2003.09.015
18 https://doi.org/10.1016/j.jcp.2006.12.014
19 https://doi.org/10.1016/j.jhydrol.2004.10.017
20 https://doi.org/10.1016/j.jhydrol.2008.11.012
21 https://doi.org/10.1016/j.probengmech.2006.11.004
22 https://doi.org/10.1016/s0309-1708(03)00106-4
23 https://doi.org/10.1029/2000wr900245
24 https://doi.org/10.1029/2001wr000678
25 https://doi.org/10.1029/2006wr005673
26 https://doi.org/10.1029/91wr00241
27 https://doi.org/10.1029/94wr00872
28 https://doi.org/10.1029/94wr01489
29 https://doi.org/10.1029/96wr01335
30 https://doi.org/10.1029/97jd01654
31 https://doi.org/10.1029/97wr00803
32 https://doi.org/10.1029/97wr01704
33 https://doi.org/10.1029/wr018i004p00835
34 https://doi.org/10.1109/5.265353
35 https://doi.org/10.1137/040615201
36 https://doi.org/10.1137/050645142
37 https://doi.org/10.1137/060657418
38 https://doi.org/10.1137/060663660
39 https://doi.org/10.1137/0915077
40 https://doi.org/10.1137/1.9781611970081
41 https://doi.org/10.1137/s0036144502417715
42 https://doi.org/10.1137/s1064827501387826
43 https://doi.org/10.2307/1268522
44 https://doi.org/10.2307/1969178
45 schema:datePublished 2010-10
46 schema:datePublishedReg 2010-10-01
47 schema:description In risk analysis, a complete characterization of the concentration distribution is necessary to determine the probability of exceeding a threshold value. The most popular method for predicting concentration distribution is Monte Carlo simulation, which samples the cumulative distribution function with a large number of repeated operations. In this paper, we first review three most commonly used Monte Carlo (MC) techniques: the standard Monte Carlo, Latin Hypercube sampling, and Quasi Monte Carlo. The performance of these three MC approaches is investigated. We then apply stochastic collocation method (SCM) to risk assessment. Unlike the MC simulations, the SCM does not require a large number of simulations of flow and solute equations. In particular, the sparse grid collocation method and probabilistic collocation method are employed to represent the concentration in terms of polynomials and unknown coefficients. The sparse grid collocation method takes advantage of Lagrange interpolation polynomials while the probabilistic collocation method relies on polynomials chaos expansions. In both methods, the stochastic equations are reduced to a system of decoupled equations, which can be solved with existing solvers and whose results are used to obtain the expansion coefficients. Then the cumulative distribution function is obtained by sampling the approximate polynomials. Our synthetic examples show that among the MC methods, the Quasi Monte Carlo gives the smallest variance for the predicted threshold probability due to its superior convergence property and that the stochastic collocation method is an accurate and efficient alternative to MC simulations.
48 schema:genre research_article
49 schema:inLanguage en
50 schema:isAccessibleForFree false
51 schema:isPartOf N04f75edcfad242c6ab26e8feb8c019c3
52 Ne853a4b20730414bbe53378c22972b25
53 sg:journal.1039987
54 schema:name A comparative study of numerical approaches to risk assessment of contaminant transport
55 schema:pagination 971-984
56 schema:productId Nb40009cc97834e269b66808f41b57933
57 Nb433d9a34c5b4bd0ba0409d7c76f7e59
58 Nd7413d9236554f6492c28348b875d76c
59 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041561579
60 https://doi.org/10.1007/s00477-010-0400-5
61 schema:sdDatePublished 2019-04-11T10:36
62 schema:sdLicense https://scigraph.springernature.com/explorer/license/
63 schema:sdPublisher Nceb79876a082442e9c878314ec2d5e89
64 schema:url http://link.springer.com/10.1007%2Fs00477-010-0400-5
65 sgo:license sg:explorer/license/
66 sgo:sdDataset articles
67 rdf:type schema:ScholarlyArticle
68 N04f75edcfad242c6ab26e8feb8c019c3 schema:volumeNumber 24
69 rdf:type schema:PublicationVolume
70 N763cdec0e55442c9a22703e4ceb48e3d rdf:first sg:person.013753244525.37
71 rdf:rest Nc55ad704e0f14ce6a399bf24f886b020
72 Nb40009cc97834e269b66808f41b57933 schema:name doi
73 schema:value 10.1007/s00477-010-0400-5
74 rdf:type schema:PropertyValue
75 Nb433d9a34c5b4bd0ba0409d7c76f7e59 schema:name readcube_id
76 schema:value c5fc541d33e7deaf929e5dcf46c69059e3b093ce3e6f24e7441cf143ce6fabb4
77 rdf:type schema:PropertyValue
78 Nb5e552532e4242c6a61213c81900c20e rdf:first sg:person.014731165631.01
79 rdf:rest rdf:nil
80 Nc55ad704e0f14ce6a399bf24f886b020 rdf:first sg:person.011315666337.64
81 rdf:rest Nb5e552532e4242c6a61213c81900c20e
82 Nceb79876a082442e9c878314ec2d5e89 schema:name Springer Nature - SN SciGraph project
83 rdf:type schema:Organization
84 Nd7413d9236554f6492c28348b875d76c schema:name dimensions_id
85 schema:value pub.1041561579
86 rdf:type schema:PropertyValue
87 Ne853a4b20730414bbe53378c22972b25 schema:issueNumber 7
88 rdf:type schema:PublicationIssue
89 Nf2908bfdd1524a12bbb74b175f1438a7 rdf:first sg:person.015224204657.60
90 rdf:rest N763cdec0e55442c9a22703e4ceb48e3d
91 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
92 schema:name Mathematical Sciences
93 rdf:type schema:DefinedTerm
94 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
95 schema:name Statistics
96 rdf:type schema:DefinedTerm
97 sg:grant.4955356 http://pending.schema.org/fundedItem sg:pub.10.1007/s00477-010-0400-5
98 rdf:type schema:MonetaryGrant
99 sg:grant.4985369 http://pending.schema.org/fundedItem sg:pub.10.1007/s00477-010-0400-5
100 rdf:type schema:MonetaryGrant
101 sg:journal.1039987 schema:issn 1436-3240
102 1436-3259
103 schema:name Stochastic Environmental Research and Risk Assessment
104 rdf:type schema:Periodical
105 sg:person.011315666337.64 schema:affiliation https://www.grid.ac/institutes/grid.42505.36
106 schema:familyName Chang
107 schema:givenName Haibin
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011315666337.64
109 rdf:type schema:Person
110 sg:person.013753244525.37 schema:affiliation https://www.grid.ac/institutes/grid.49470.3e
111 schema:familyName Shi
112 schema:givenName Liangsheng
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013753244525.37
114 rdf:type schema:Person
115 sg:person.014731165631.01 schema:affiliation https://www.grid.ac/institutes/grid.49470.3e
116 schema:familyName Yang
117 schema:givenName Jinzhong
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014731165631.01
119 rdf:type schema:Person
120 sg:person.015224204657.60 schema:affiliation https://www.grid.ac/institutes/grid.42505.36
121 schema:familyName Zhang
122 schema:givenName Dongxiao
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015224204657.60
124 rdf:type schema:Person
125 sg:pub.10.1007/978-1-4612-3094-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033094591
126 https://doi.org/10.1007/978-1-4612-3094-6
127 rdf:type schema:CreativeWork
128 sg:pub.10.1007/s00477-004-0209-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002482106
129 https://doi.org/10.1007/s00477-004-0209-1
130 rdf:type schema:CreativeWork
131 sg:pub.10.1007/s00477-005-0025-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052377878
132 https://doi.org/10.1007/s00477-005-0025-2
133 rdf:type schema:CreativeWork
134 sg:pub.10.1007/s00477-008-0261-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014678683
135 https://doi.org/10.1007/s00477-008-0261-3
136 rdf:type schema:CreativeWork
137 sg:pub.10.1007/s004770050030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000592396
138 https://doi.org/10.1007/s004770050030
139 rdf:type schema:CreativeWork
140 sg:pub.10.1007/s11242-004-1119-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1026606361
141 https://doi.org/10.1007/s11242-004-1119-x
142 rdf:type schema:CreativeWork
143 sg:pub.10.1023/a:1015744421033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009076703
144 https://doi.org/10.1023/a:1015744421033
145 rdf:type schema:CreativeWork
146 https://app.dimensions.ai/details/publication/pub.1033094591 schema:CreativeWork
147 https://doi.org/10.1006/jcom.1995.1001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021684988
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1006/jcph.1995.1209 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020195501
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/j.apnum.2007.09.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047766222
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/j.cma.2007.04.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033478254
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/j.jconhyd.2007.05.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036800404
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/j.jcp.2003.09.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012117048
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/j.jcp.2006.12.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043998082
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/j.jhydrol.2004.10.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046730476
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/j.jhydrol.2008.11.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032397751
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1016/j.probengmech.2006.11.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005612858
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1016/s0309-1708(03)00106-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026503242
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1029/2000wr900245 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023050870
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1029/2001wr000678 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007984309
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1029/2006wr005673 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026493242
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1029/91wr00241 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026195433
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1029/94wr00872 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040433699
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1029/94wr01489 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042914660
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1029/96wr01335 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015779685
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1029/97jd01654 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013016083
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1029/97wr00803 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002630379
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1029/97wr01704 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009909031
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1029/wr018i004p00835 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023174196
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1109/5.265353 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061179139
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1137/040615201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062845261
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1137/050645142 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062846717
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1137/060657418 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062849287
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1137/060663660 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062849502
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1137/0915077 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062857684
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1137/1.9781611970081 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098552246
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1137/s0036144502417715 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062877798
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1137/s1064827501387826 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062883896
208 rdf:type schema:CreativeWork
209 https://doi.org/10.2307/1268522 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069420824
210 rdf:type schema:CreativeWork
211 https://doi.org/10.2307/1969178 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069674572
212 rdf:type schema:CreativeWork
213 https://www.grid.ac/institutes/grid.42505.36 schema:alternateName University of Southern California
214 schema:name Department of Energy and Resources Engineering, College of Engineering, Peking University, 100871, Beijing, China
215 The Sonny Astani Department of Civil and Environmental Engineering, University of Southern California, 90089, Los Angeles, CA, USA
216 rdf:type schema:Organization
217 https://www.grid.ac/institutes/grid.49470.3e schema:alternateName Wuhan University
218 schema:name National Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, 430072, Wuhan, China
219 The Sonny Astani Department of Civil and Environmental Engineering, University of Southern California, 90089, Los Angeles, CA, USA
220 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...