Using data assimilation method to calibrate a heterogeneous conductivity field conditioning on transient flow test data View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2010-04-21

AUTHORS

Juxiu Tong, Bill X. Hu, Jinzhong Yang

ABSTRACT

A data assimilation method is developed to calibrate a heterogeneous hydraulic conductivity field conditioning on transient pumping test data. The ensemble Kalman filter (EnKF) approach is used to update model parameters such as hydraulic conductivity and model variables such as hydraulic head using available data. A synthetical two-dimensional flow case is used to assess the capability of the EnKF method to calibrate a heterogeneous conductivity field by assimilating transient flow data from observation wells under different hydraulic boundary conditions. The study results indicate that the EnKF method will significantly improve the estimation of the hydraulic conductivity field by assimilating continuous hydraulic head measurements and the hydraulic boundary condition will significantly affect the simulation results. For our cases, after a few data assimilation steps, the assimilated conductivity field with four Neumann boundaries matches the real field well while the assimilated conductivity field with mixed Dirichlet and Neumann boundaries does not. We found in our cases that the ensemble size should be 300 or larger for the numerical simulation. The number and the locations of the observation wells will significantly affect the hydraulic conductivity field calibration. More... »

PAGES

1211-1223

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00477-010-0392-1

DOI

http://dx.doi.org/10.1007/s00477-010-0392-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1029308599


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, 430072, Wuhan, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.49470.3e", 
          "name": [
            "Department of Geological Sciences, Florida State University, 32306, Tallahassee, FL, USA", 
            "State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, 430072, Wuhan, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tong", 
        "givenName": "Juxiu", 
        "id": "sg:person.010314752347.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010314752347.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Geological Sciences, Florida State University, 32306, Tallahassee, FL, USA", 
          "id": "http://www.grid.ac/institutes/grid.255986.5", 
          "name": [
            "Department of Geological Sciences, Florida State University, 32306, Tallahassee, FL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hu", 
        "givenName": "Bill X.", 
        "id": "sg:person.012556140447.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012556140447.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, 430072, Wuhan, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.49470.3e", 
          "name": [
            "State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, 430072, Wuhan, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Jinzhong", 
        "id": "sg:person.014731165631.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014731165631.01"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00477-008-0289-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029417657", 
          "https://doi.org/10.1007/s00477-008-0289-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10040-004-0404-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045573619", 
          "https://doi.org/10.1007/s10040-004-0404-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10236-004-0099-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036845347", 
          "https://doi.org/10.1007/s10236-004-0099-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00477-004-0181-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031588892", 
          "https://doi.org/10.1007/s00477-004-0181-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10236-003-0036-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053511041", 
          "https://doi.org/10.1007/s10236-003-0036-9"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-04-21", 
    "datePublishedReg": "2010-04-21", 
    "description": "A data assimilation method is developed to calibrate a heterogeneous hydraulic conductivity field conditioning on transient pumping test data. The ensemble Kalman filter (EnKF) approach is used to update model parameters such as hydraulic conductivity and model variables such as hydraulic head using available data. A synthetical two-dimensional flow case is used to assess the capability of the EnKF method to calibrate a heterogeneous conductivity field by assimilating transient flow data from observation wells under different hydraulic boundary conditions. The study results indicate that the EnKF method will significantly improve the estimation of the hydraulic conductivity field by assimilating continuous hydraulic head measurements and the hydraulic boundary condition will significantly affect the simulation results. For our cases, after a few data assimilation steps, the assimilated conductivity field with four Neumann boundaries matches the real field well while the assimilated conductivity field with mixed Dirichlet and Neumann boundaries does not. We found in our cases that the ensemble size should be 300 or larger for the numerical simulation. The number and the locations of the observation wells will significantly affect the hydraulic conductivity field calibration.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00477-010-0392-1", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3069625", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.9415216", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1039987", 
        "issn": [
          "1436-3240", 
          "1436-3259"
        ], 
        "name": "Stochastic Environmental Research and Risk Assessment", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "8", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "24"
      }
    ], 
    "keywords": [
      "hydraulic boundary conditions", 
      "conductivity field", 
      "different hydraulic boundary conditions", 
      "two-dimensional flow case", 
      "transient flow data", 
      "boundary conditions", 
      "field conditioning", 
      "heterogeneous conductivity fields", 
      "hydraulic head measurements", 
      "hydraulic conductivity field", 
      "flow test data", 
      "observation wells", 
      "test data", 
      "ensemble Kalman filter (EnKF) approach", 
      "Kalman filter approach", 
      "flow cases", 
      "EnKF method", 
      "hydraulic head", 
      "numerical simulations", 
      "data assimilation method", 
      "hydraulic conductivity", 
      "field calibration", 
      "Neumann boundary", 
      "data assimilation step", 
      "filter approach", 
      "assimilation method", 
      "simulation results", 
      "flow data", 
      "model parameters", 
      "head measurements", 
      "conductivity", 
      "field", 
      "boundaries", 
      "real field", 
      "simulations", 
      "method", 
      "wells", 
      "conditions", 
      "assimilation step", 
      "model variables", 
      "capability", 
      "conditioning", 
      "calibration", 
      "estimation", 
      "measurements", 
      "parameters", 
      "results", 
      "mixed Dirichlet", 
      "ensemble size", 
      "size", 
      "study results", 
      "step", 
      "location", 
      "data", 
      "Dirichlet", 
      "cases", 
      "approach", 
      "available data", 
      "variables", 
      "head", 
      "number", 
      "heterogeneous hydraulic conductivity field conditioning", 
      "hydraulic conductivity field conditioning", 
      "conductivity field conditioning", 
      "continuous hydraulic head measurements", 
      "hydraulic conductivity field calibration", 
      "conductivity field calibration", 
      "heterogeneous conductivity field conditioning", 
      "transient flow test data"
    ], 
    "name": "Using data assimilation method to calibrate a heterogeneous conductivity field conditioning on transient flow test data", 
    "pagination": "1211-1223", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1029308599"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00477-010-0392-1"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00477-010-0392-1", 
      "https://app.dimensions.ai/details/publication/pub.1029308599"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:24", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_513.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00477-010-0392-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00477-010-0392-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00477-010-0392-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00477-010-0392-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00477-010-0392-1'


 

This table displays all metadata directly associated to this object as RDF triples.

169 TRIPLES      22 PREDICATES      99 URIs      86 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00477-010-0392-1 schema:about anzsrc-for:01
2 anzsrc-for:09
3 schema:author N313b9a8187514450af7e3f6ac0810f53
4 schema:citation sg:pub.10.1007/s00477-004-0181-9
5 sg:pub.10.1007/s00477-008-0289-4
6 sg:pub.10.1007/s10040-004-0404-7
7 sg:pub.10.1007/s10236-003-0036-9
8 sg:pub.10.1007/s10236-004-0099-2
9 schema:datePublished 2010-04-21
10 schema:datePublishedReg 2010-04-21
11 schema:description A data assimilation method is developed to calibrate a heterogeneous hydraulic conductivity field conditioning on transient pumping test data. The ensemble Kalman filter (EnKF) approach is used to update model parameters such as hydraulic conductivity and model variables such as hydraulic head using available data. A synthetical two-dimensional flow case is used to assess the capability of the EnKF method to calibrate a heterogeneous conductivity field by assimilating transient flow data from observation wells under different hydraulic boundary conditions. The study results indicate that the EnKF method will significantly improve the estimation of the hydraulic conductivity field by assimilating continuous hydraulic head measurements and the hydraulic boundary condition will significantly affect the simulation results. For our cases, after a few data assimilation steps, the assimilated conductivity field with four Neumann boundaries matches the real field well while the assimilated conductivity field with mixed Dirichlet and Neumann boundaries does not. We found in our cases that the ensemble size should be 300 or larger for the numerical simulation. The number and the locations of the observation wells will significantly affect the hydraulic conductivity field calibration.
12 schema:genre article
13 schema:inLanguage en
14 schema:isAccessibleForFree false
15 schema:isPartOf N8ee87790ec3f4299b43e409b1d47c3a8
16 Nf7de12b3fca041ab9a112aa691dbf228
17 sg:journal.1039987
18 schema:keywords Dirichlet
19 EnKF method
20 Kalman filter approach
21 Neumann boundary
22 approach
23 assimilation method
24 assimilation step
25 available data
26 boundaries
27 boundary conditions
28 calibration
29 capability
30 cases
31 conditioning
32 conditions
33 conductivity
34 conductivity field
35 conductivity field calibration
36 conductivity field conditioning
37 continuous hydraulic head measurements
38 data
39 data assimilation method
40 data assimilation step
41 different hydraulic boundary conditions
42 ensemble Kalman filter (EnKF) approach
43 ensemble size
44 estimation
45 field
46 field calibration
47 field conditioning
48 filter approach
49 flow cases
50 flow data
51 flow test data
52 head
53 head measurements
54 heterogeneous conductivity field conditioning
55 heterogeneous conductivity fields
56 heterogeneous hydraulic conductivity field conditioning
57 hydraulic boundary conditions
58 hydraulic conductivity
59 hydraulic conductivity field
60 hydraulic conductivity field calibration
61 hydraulic conductivity field conditioning
62 hydraulic head
63 hydraulic head measurements
64 location
65 measurements
66 method
67 mixed Dirichlet
68 model parameters
69 model variables
70 number
71 numerical simulations
72 observation wells
73 parameters
74 real field
75 results
76 simulation results
77 simulations
78 size
79 step
80 study results
81 test data
82 transient flow data
83 transient flow test data
84 two-dimensional flow case
85 variables
86 wells
87 schema:name Using data assimilation method to calibrate a heterogeneous conductivity field conditioning on transient flow test data
88 schema:pagination 1211-1223
89 schema:productId Nd5df7460400e423c93f5dc3084e871be
90 Ndb9721c91e5c45e4b19058fbfb344b23
91 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029308599
92 https://doi.org/10.1007/s00477-010-0392-1
93 schema:sdDatePublished 2021-12-01T19:24
94 schema:sdLicense https://scigraph.springernature.com/explorer/license/
95 schema:sdPublisher Neb123ccfd28c44f78d9ac418f6fb6497
96 schema:url https://doi.org/10.1007/s00477-010-0392-1
97 sgo:license sg:explorer/license/
98 sgo:sdDataset articles
99 rdf:type schema:ScholarlyArticle
100 N313b9a8187514450af7e3f6ac0810f53 rdf:first sg:person.010314752347.24
101 rdf:rest N3b969d60bdb748acb7b8c44805990e77
102 N3b969d60bdb748acb7b8c44805990e77 rdf:first sg:person.012556140447.41
103 rdf:rest N69d590ec963a45209a69d7885f394c1c
104 N69d590ec963a45209a69d7885f394c1c rdf:first sg:person.014731165631.01
105 rdf:rest rdf:nil
106 N8ee87790ec3f4299b43e409b1d47c3a8 schema:volumeNumber 24
107 rdf:type schema:PublicationVolume
108 Nd5df7460400e423c93f5dc3084e871be schema:name dimensions_id
109 schema:value pub.1029308599
110 rdf:type schema:PropertyValue
111 Ndb9721c91e5c45e4b19058fbfb344b23 schema:name doi
112 schema:value 10.1007/s00477-010-0392-1
113 rdf:type schema:PropertyValue
114 Neb123ccfd28c44f78d9ac418f6fb6497 schema:name Springer Nature - SN SciGraph project
115 rdf:type schema:Organization
116 Nf7de12b3fca041ab9a112aa691dbf228 schema:issueNumber 8
117 rdf:type schema:PublicationIssue
118 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
119 schema:name Mathematical Sciences
120 rdf:type schema:DefinedTerm
121 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
122 schema:name Engineering
123 rdf:type schema:DefinedTerm
124 sg:grant.3069625 http://pending.schema.org/fundedItem sg:pub.10.1007/s00477-010-0392-1
125 rdf:type schema:MonetaryGrant
126 sg:grant.9415216 http://pending.schema.org/fundedItem sg:pub.10.1007/s00477-010-0392-1
127 rdf:type schema:MonetaryGrant
128 sg:journal.1039987 schema:issn 1436-3240
129 1436-3259
130 schema:name Stochastic Environmental Research and Risk Assessment
131 schema:publisher Springer Nature
132 rdf:type schema:Periodical
133 sg:person.010314752347.24 schema:affiliation grid-institutes:grid.49470.3e
134 schema:familyName Tong
135 schema:givenName Juxiu
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010314752347.24
137 rdf:type schema:Person
138 sg:person.012556140447.41 schema:affiliation grid-institutes:grid.255986.5
139 schema:familyName Hu
140 schema:givenName Bill X.
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012556140447.41
142 rdf:type schema:Person
143 sg:person.014731165631.01 schema:affiliation grid-institutes:grid.49470.3e
144 schema:familyName Yang
145 schema:givenName Jinzhong
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014731165631.01
147 rdf:type schema:Person
148 sg:pub.10.1007/s00477-004-0181-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031588892
149 https://doi.org/10.1007/s00477-004-0181-9
150 rdf:type schema:CreativeWork
151 sg:pub.10.1007/s00477-008-0289-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029417657
152 https://doi.org/10.1007/s00477-008-0289-4
153 rdf:type schema:CreativeWork
154 sg:pub.10.1007/s10040-004-0404-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045573619
155 https://doi.org/10.1007/s10040-004-0404-7
156 rdf:type schema:CreativeWork
157 sg:pub.10.1007/s10236-003-0036-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053511041
158 https://doi.org/10.1007/s10236-003-0036-9
159 rdf:type schema:CreativeWork
160 sg:pub.10.1007/s10236-004-0099-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036845347
161 https://doi.org/10.1007/s10236-004-0099-2
162 rdf:type schema:CreativeWork
163 grid-institutes:grid.255986.5 schema:alternateName Department of Geological Sciences, Florida State University, 32306, Tallahassee, FL, USA
164 schema:name Department of Geological Sciences, Florida State University, 32306, Tallahassee, FL, USA
165 rdf:type schema:Organization
166 grid-institutes:grid.49470.3e schema:alternateName State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, 430072, Wuhan, People’s Republic of China
167 schema:name Department of Geological Sciences, Florida State University, 32306, Tallahassee, FL, USA
168 State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, 430072, Wuhan, People’s Republic of China
169 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...