A stochastic approach to nonlinear unconfined flow subject to multiple random fields View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2009-08

AUTHORS

Liangsheng Shi, Jinzhong Yang, Dongxiao Zhang

ABSTRACT

In this study, the KLME approach, a moment-equation approach based on the Karhunen–Loeve decomposition developed by Zhang and Lu (Comput Phys 194(2):773–794, 2004), is applied to unconfined flow with multiple random inputs. The log-transformed hydraulic conductivity F, the recharge R, the Dirichlet boundary condition H, and the Neumann boundary condition Q are assumed to be Gaussian random fields with known means and covariance functions. The F, R, H and Q are first decomposed into finite series in terms of Gaussian standard random variables by the Karhunen–Loeve expansion. The hydraulic head h is then represented by a perturbation expansion, and each term in the perturbation expansion is written as the products of unknown coefficients and Gaussian standard random variables obtained from the Karhunen–Loeve expansions. A series of deterministic partial differential equations are derived from the stochastic partial differential equations. The resulting equations for uncorrelated and perfectly correlated cases are developed. The equations can be solved sequentially from low to high order by the finite element method. We examine the accuracy of the KLME approach for the groundwater flow subject to uncorrelated or perfectly correlated random inputs and study the capability of the KLME method for predicting the head variance in the presence of various spatially variable parameters. It is shown that the proposed numerical model gives accurate results at a much smaller computational cost than the Monte Carlo simulation. More... »

PAGES

823-835

References to SciGraph publications

  • 2009-01. Stochastic analysis of transient three-phase flow in heterogeneous porous media in STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT
  • 1989. Flow and Transport in Porous Formations in NONE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00477-008-0261-3

    DOI

    http://dx.doi.org/10.1007/s00477-008-0261-3

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1014678683


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Numerical and Computational Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Southern California", 
              "id": "https://www.grid.ac/institutes/grid.42505.36", 
              "name": [
                "National Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, 430072, Wuhan, China", 
                "The Sonny Astani Department of Civil and Environmental Engineering, University of Southern California, 90089, Los Angeles, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Shi", 
            "givenName": "Liangsheng", 
            "id": "sg:person.013753244525.37", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013753244525.37"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Wuhan University", 
              "id": "https://www.grid.ac/institutes/grid.49470.3e", 
              "name": [
                "National Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, 430072, Wuhan, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yang", 
            "givenName": "Jinzhong", 
            "id": "sg:person.014731165631.01", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014731165631.01"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Peking University", 
              "id": "https://www.grid.ac/institutes/grid.11135.37", 
              "name": [
                "The Sonny Astani Department of Civil and Environmental Engineering, University of Southern California, 90089, Los Angeles, CA, USA", 
                "Department of Energy and Resources Engineering, College of Engineering, Peking University, 100871, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhang", 
            "givenName": "Dongxiao", 
            "id": "sg:person.015224204657.60", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015224204657.60"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/s0045-7825(02)00421-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000311055"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0266-8920(02)00013-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002034523"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.advwatres.2004.08.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007882054"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0022-1694(94)90108-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011916675"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0022-1694(94)90108-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011916675"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jcp.2003.09.015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012117048"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-75015-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019196658", 
              "https://doi.org/10.1007/978-3-642-75015-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-75015-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019196658", 
              "https://doi.org/10.1007/978-3-642-75015-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jhydrol.2003.10.023", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036678648"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1029/2005wr004766", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038834701"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0165-1684(99)00099-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039878202"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1029/2005wr004257", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041602870"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1029/2004wr003412", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044890063"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0022-1694(98)00086-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046337887"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1029/wr021i004p00457", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048520981"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1029/wr025i003p00405", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052589369"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00477-007-0198-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053127999", 
              "https://doi.org/10.1007/s00477-007-0198-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00477-007-0198-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053127999", 
              "https://doi.org/10.1007/s00477-007-0198-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/060665282", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062849553"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2009-08", 
        "datePublishedReg": "2009-08-01", 
        "description": "In this study, the KLME approach, a moment-equation approach based on the Karhunen\u2013Loeve decomposition developed by Zhang and Lu (Comput Phys 194(2):773\u2013794, 2004), is applied to unconfined flow with multiple random inputs. The log-transformed hydraulic conductivity F, the recharge R, the Dirichlet boundary condition H, and the Neumann boundary condition Q are assumed to be Gaussian random fields with known means and covariance functions. The F, R, H and Q are first decomposed into finite series in terms of Gaussian standard random variables by the Karhunen\u2013Loeve expansion. The hydraulic head h is then represented by a perturbation expansion, and each term in the perturbation expansion is written as the products of unknown coefficients and Gaussian standard random variables obtained from the Karhunen\u2013Loeve expansions. A series of deterministic partial differential equations are derived from the stochastic partial differential equations. The resulting equations for uncorrelated and perfectly correlated cases are developed. The equations can be solved sequentially from low to high order by the finite element method. We examine the accuracy of the KLME approach for the groundwater flow subject to uncorrelated or perfectly correlated random inputs and study the capability of the KLME method for predicting the head variance in the presence of various spatially variable parameters. It is shown that the proposed numerical model gives accurate results at a much smaller computational cost than the Monte Carlo simulation.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s00477-008-0261-3", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.4955356", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.4985369", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1039987", 
            "issn": [
              "1436-3240", 
              "1436-3259"
            ], 
            "name": "Stochastic Environmental Research and Risk Assessment", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "6", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "23"
          }
        ], 
        "name": "A stochastic approach to nonlinear unconfined flow subject to multiple random fields", 
        "pagination": "823-835", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "45eebc3163258778c782cfc49de52f5355ec62ca60d9b4dcdb9d0445fde46c21"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00477-008-0261-3"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1014678683"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00477-008-0261-3", 
          "https://app.dimensions.ai/details/publication/pub.1014678683"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T14:33", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000373_0000000373/records_13106_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs00477-008-0261-3"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00477-008-0261-3'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00477-008-0261-3'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00477-008-0261-3'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00477-008-0261-3'


     

    This table displays all metadata directly associated to this object as RDF triples.

    137 TRIPLES      21 PREDICATES      43 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00477-008-0261-3 schema:about anzsrc-for:01
    2 anzsrc-for:0103
    3 schema:author N0e4fbfb30a864c58908b1114e397a897
    4 schema:citation sg:pub.10.1007/978-3-642-75015-1
    5 sg:pub.10.1007/s00477-007-0198-y
    6 https://doi.org/10.1016/0022-1694(94)90108-2
    7 https://doi.org/10.1016/j.advwatres.2004.08.001
    8 https://doi.org/10.1016/j.jcp.2003.09.015
    9 https://doi.org/10.1016/j.jhydrol.2003.10.023
    10 https://doi.org/10.1016/s0022-1694(98)00086-9
    11 https://doi.org/10.1016/s0045-7825(02)00421-8
    12 https://doi.org/10.1016/s0165-1684(99)00099-7
    13 https://doi.org/10.1016/s0266-8920(02)00013-9
    14 https://doi.org/10.1029/2004wr003412
    15 https://doi.org/10.1029/2005wr004257
    16 https://doi.org/10.1029/2005wr004766
    17 https://doi.org/10.1029/wr021i004p00457
    18 https://doi.org/10.1029/wr025i003p00405
    19 https://doi.org/10.1137/060665282
    20 schema:datePublished 2009-08
    21 schema:datePublishedReg 2009-08-01
    22 schema:description In this study, the KLME approach, a moment-equation approach based on the Karhunen–Loeve decomposition developed by Zhang and Lu (Comput Phys 194(2):773–794, 2004), is applied to unconfined flow with multiple random inputs. The log-transformed hydraulic conductivity F, the recharge R, the Dirichlet boundary condition H, and the Neumann boundary condition Q are assumed to be Gaussian random fields with known means and covariance functions. The F, R, H and Q are first decomposed into finite series in terms of Gaussian standard random variables by the Karhunen–Loeve expansion. The hydraulic head h is then represented by a perturbation expansion, and each term in the perturbation expansion is written as the products of unknown coefficients and Gaussian standard random variables obtained from the Karhunen–Loeve expansions. A series of deterministic partial differential equations are derived from the stochastic partial differential equations. The resulting equations for uncorrelated and perfectly correlated cases are developed. The equations can be solved sequentially from low to high order by the finite element method. We examine the accuracy of the KLME approach for the groundwater flow subject to uncorrelated or perfectly correlated random inputs and study the capability of the KLME method for predicting the head variance in the presence of various spatially variable parameters. It is shown that the proposed numerical model gives accurate results at a much smaller computational cost than the Monte Carlo simulation.
    23 schema:genre research_article
    24 schema:inLanguage en
    25 schema:isAccessibleForFree false
    26 schema:isPartOf N2edebb74ce2e4207a9742abee3c12404
    27 Ne22ab9c817d042ddae5a51e284e966f6
    28 sg:journal.1039987
    29 schema:name A stochastic approach to nonlinear unconfined flow subject to multiple random fields
    30 schema:pagination 823-835
    31 schema:productId N097d265c603d454588bdb691f138f3a2
    32 N294e5da8f26d4454898b1b12e1cf42ea
    33 Nce61f29ceec44fe788e6795912ef4760
    34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014678683
    35 https://doi.org/10.1007/s00477-008-0261-3
    36 schema:sdDatePublished 2019-04-11T14:33
    37 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    38 schema:sdPublisher N288a658fca4d4a2397ed139df16ab830
    39 schema:url http://link.springer.com/10.1007%2Fs00477-008-0261-3
    40 sgo:license sg:explorer/license/
    41 sgo:sdDataset articles
    42 rdf:type schema:ScholarlyArticle
    43 N097d265c603d454588bdb691f138f3a2 schema:name readcube_id
    44 schema:value 45eebc3163258778c782cfc49de52f5355ec62ca60d9b4dcdb9d0445fde46c21
    45 rdf:type schema:PropertyValue
    46 N0e4fbfb30a864c58908b1114e397a897 rdf:first sg:person.013753244525.37
    47 rdf:rest Nb88b42c852374c6298aea91ff44fba2f
    48 N288a658fca4d4a2397ed139df16ab830 schema:name Springer Nature - SN SciGraph project
    49 rdf:type schema:Organization
    50 N294e5da8f26d4454898b1b12e1cf42ea schema:name dimensions_id
    51 schema:value pub.1014678683
    52 rdf:type schema:PropertyValue
    53 N2edebb74ce2e4207a9742abee3c12404 schema:volumeNumber 23
    54 rdf:type schema:PublicationVolume
    55 N34a6425ca08644228aeb8eae15da06d8 rdf:first sg:person.015224204657.60
    56 rdf:rest rdf:nil
    57 Nb88b42c852374c6298aea91ff44fba2f rdf:first sg:person.014731165631.01
    58 rdf:rest N34a6425ca08644228aeb8eae15da06d8
    59 Nce61f29ceec44fe788e6795912ef4760 schema:name doi
    60 schema:value 10.1007/s00477-008-0261-3
    61 rdf:type schema:PropertyValue
    62 Ne22ab9c817d042ddae5a51e284e966f6 schema:issueNumber 6
    63 rdf:type schema:PublicationIssue
    64 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    65 schema:name Mathematical Sciences
    66 rdf:type schema:DefinedTerm
    67 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
    68 schema:name Numerical and Computational Mathematics
    69 rdf:type schema:DefinedTerm
    70 sg:grant.4955356 http://pending.schema.org/fundedItem sg:pub.10.1007/s00477-008-0261-3
    71 rdf:type schema:MonetaryGrant
    72 sg:grant.4985369 http://pending.schema.org/fundedItem sg:pub.10.1007/s00477-008-0261-3
    73 rdf:type schema:MonetaryGrant
    74 sg:journal.1039987 schema:issn 1436-3240
    75 1436-3259
    76 schema:name Stochastic Environmental Research and Risk Assessment
    77 rdf:type schema:Periodical
    78 sg:person.013753244525.37 schema:affiliation https://www.grid.ac/institutes/grid.42505.36
    79 schema:familyName Shi
    80 schema:givenName Liangsheng
    81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013753244525.37
    82 rdf:type schema:Person
    83 sg:person.014731165631.01 schema:affiliation https://www.grid.ac/institutes/grid.49470.3e
    84 schema:familyName Yang
    85 schema:givenName Jinzhong
    86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014731165631.01
    87 rdf:type schema:Person
    88 sg:person.015224204657.60 schema:affiliation https://www.grid.ac/institutes/grid.11135.37
    89 schema:familyName Zhang
    90 schema:givenName Dongxiao
    91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015224204657.60
    92 rdf:type schema:Person
    93 sg:pub.10.1007/978-3-642-75015-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019196658
    94 https://doi.org/10.1007/978-3-642-75015-1
    95 rdf:type schema:CreativeWork
    96 sg:pub.10.1007/s00477-007-0198-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1053127999
    97 https://doi.org/10.1007/s00477-007-0198-y
    98 rdf:type schema:CreativeWork
    99 https://doi.org/10.1016/0022-1694(94)90108-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011916675
    100 rdf:type schema:CreativeWork
    101 https://doi.org/10.1016/j.advwatres.2004.08.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007882054
    102 rdf:type schema:CreativeWork
    103 https://doi.org/10.1016/j.jcp.2003.09.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012117048
    104 rdf:type schema:CreativeWork
    105 https://doi.org/10.1016/j.jhydrol.2003.10.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036678648
    106 rdf:type schema:CreativeWork
    107 https://doi.org/10.1016/s0022-1694(98)00086-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046337887
    108 rdf:type schema:CreativeWork
    109 https://doi.org/10.1016/s0045-7825(02)00421-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000311055
    110 rdf:type schema:CreativeWork
    111 https://doi.org/10.1016/s0165-1684(99)00099-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039878202
    112 rdf:type schema:CreativeWork
    113 https://doi.org/10.1016/s0266-8920(02)00013-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002034523
    114 rdf:type schema:CreativeWork
    115 https://doi.org/10.1029/2004wr003412 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044890063
    116 rdf:type schema:CreativeWork
    117 https://doi.org/10.1029/2005wr004257 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041602870
    118 rdf:type schema:CreativeWork
    119 https://doi.org/10.1029/2005wr004766 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038834701
    120 rdf:type schema:CreativeWork
    121 https://doi.org/10.1029/wr021i004p00457 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048520981
    122 rdf:type schema:CreativeWork
    123 https://doi.org/10.1029/wr025i003p00405 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052589369
    124 rdf:type schema:CreativeWork
    125 https://doi.org/10.1137/060665282 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062849553
    126 rdf:type schema:CreativeWork
    127 https://www.grid.ac/institutes/grid.11135.37 schema:alternateName Peking University
    128 schema:name Department of Energy and Resources Engineering, College of Engineering, Peking University, 100871, Beijing, China
    129 The Sonny Astani Department of Civil and Environmental Engineering, University of Southern California, 90089, Los Angeles, CA, USA
    130 rdf:type schema:Organization
    131 https://www.grid.ac/institutes/grid.42505.36 schema:alternateName University of Southern California
    132 schema:name National Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, 430072, Wuhan, China
    133 The Sonny Astani Department of Civil and Environmental Engineering, University of Southern California, 90089, Los Angeles, CA, USA
    134 rdf:type schema:Organization
    135 https://www.grid.ac/institutes/grid.49470.3e schema:alternateName Wuhan University
    136 schema:name National Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, 430072, Wuhan, China
    137 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...