Are chlorophyll concentrations and nitrogen across the vertical canopy profile affected by elevated CO2 in mature Quercus trees? View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2022-07-14

AUTHORS

A. Gardner, D. S. Ellsworth, J. Pritchard, A. R. MacKenzie

ABSTRACT

Key messageIn mature Q. robur, chlorophyll varied with season and canopy height, whilst eCO2-driven changes were consistent with Marea, highlighting key factors for consideration when scaling photosynthetic processes and canopy N-use.Nitrogen-rich chlorophyll and carotenoid pigments are important in photosynthetic functioning. Photosynthetic pigments have been found to decrease with elevated CO2 (eCO2), but few such studies have been done in aged forest trees. This study aimed to assess the effects of eCO2 (150 μmol mol−1 above ambient) and canopy position on chlorophyll content in mature Quercus robur (Q. robur). Over 5000 in situ chlorophyll absorbance measurements, alongside laboratory chlorophyll extractions, were collected on canopy-dominant Q. robur in the 3rd and 4th season of CO2 fumigation of a free-air CO2 enrichment (FACE) study in central England. Mass-based chlorophyll concentration (Chlmass, mg g−1) was significantly higher in the lower canopy compared to upper canopy foliage (P < 0.05). In contrast, significantly higher chlorophyll content (Chlarea, mg m−2) was observed in the upper canopy. ECO2 did not affect Chlmass but Chlarea significantly increased, attributable to increased leaf mass per unit area (Marea, g m−2). We found no effect of eCO2 on mass-based or area-based nitrogen (Nmass, mg g−1 or Narea g m−2); however, Narea significantly increased with canopy height, again attributable to Marea. The parallel relationships between Marea, Narea and Chlarea suggest the allocation of N to light harvesting is maintained with eCO2 exposure as well as in the upper canopy, and that increased photosynthetic mass may help regulate the eCO2 variation. An understanding of changes in the light-harvesting machinery with eCO2 will be useful to assess canopy processes and, at larger scales, changes in biogeochemical cycles in future climate scenarios. More... »

PAGES

1-13

References to SciGraph publications

  • 2017-03-06. Elevated CO2 does not increase eucalypt forest productivity on a low-phosphorus soil in NATURE CLIMATE CHANGE
  • 1993-11. Canopy structure and vertical patterns of photosynthesis and related leaf traits in a deciduous forest in OECOLOGIA
  • 2007-01. Evaluating the relationship between leaf chlorophyll concentration and SPAD-502 chlorophyll meter readings in PHOTOSYNTHESIS RESEARCH
  • 2016. Canopy Photosynthesis: From Basics to Applications in NONE
  • 2015-05-21. Using ecosystem experiments to improve vegetation models in NATURE CLIMATE CHANGE
  • 2003. Physiological Plant Ecology in NONE
  • 2010-08-11. Sustained enhancement of photosynthesis in mature deciduous forest trees after 8 years of free air CO2 enrichment in PLANTA
  • 1995-01. Calibration of the Minolta SPAD-502 leaf chlorophyll meter in PHOTOSYNTHESIS RESEARCH
  • 1997-01. Distribution patterns of foliar carbon and nitrogen as affected by tree dimensions and relative light conditions in the canopy of Picea abies in TREES
  • 2003-05-06. Seasonal changes in the photosynthetic capacity of canopy oak (Quercus robur) leaves: the impact of slow development on annual carbon uptake in INTERNATIONAL JOURNAL OF BIOMETEOROLOGY
  • 2012-02-16. Responses of leaf structure and photosynthetic properties to intra-canopy light gradients: a common garden test with four broadleaf deciduous angiosperm and seven evergreen conifer tree species in OECOLOGIA
  • 2020-03-23. Leaf chlorophyll estimates of temperate deciduous shrubs during autumn senescence using a SPAD-502 meter and calibration with extracted chlorophyll in ANNALS OF FOREST SCIENCE
  • 1993-07. Elevated CO2 alters deployment of roots in “small” growth containers in OECOLOGIA
  • 2019-08-12. Nitrogen and phosphorus constrain the CO2 fertilization of global plant biomass in NATURE CLIMATE CHANGE
  • 2010-01. Assessing foliar chlorophyll contents with the SPAD-502 chlorophyll meter: a calibration test with thirteen tree species of tropical rainforest in French Guiana in ANNALS OF FOREST SCIENCE
  • 2017-10-27. Genetic variation among pines and spruces in assimilation efficiencies and photosynthetic regulation under elevated CO2 in TREES
  • 2021-07-16. Chlorophyll pigment and needle macronutrient responses and interactions to soil moisture and atmospheric CO2 treatments of eight pine and spruce species in TREES
  • 2009-06. Relationship between specific leaf area, leaf thickness, leaf water content and SPAD-502 readings in six Amazonian tree species in PHOTOSYNTHETICA
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00468-022-02328-7

    DOI

    http://dx.doi.org/10.1007/s00468-022-02328-7

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1149471896


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0607", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Plant Biology", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "School of Biological Sciences, University of Birmingham, B15 2TT, Edgbaston, England", 
              "id": "http://www.grid.ac/institutes/grid.6572.6", 
              "name": [
                "Birmingham Institute of Forest Research, University of Birmingham, B15 2TT, Edgbaston, England", 
                "School of Biological Sciences, University of Birmingham, B15 2TT, Edgbaston, England"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gardner", 
            "givenName": "A.", 
            "id": "sg:person.010612501075.16", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010612501075.16"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, 2751, Penrith, NSW, Australia", 
              "id": "http://www.grid.ac/institutes/grid.1029.a", 
              "name": [
                "Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, 2751, Penrith, NSW, Australia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ellsworth", 
            "givenName": "D. S.", 
            "id": "sg:person.0774774130.01", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0774774130.01"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Biological Sciences, University of Birmingham, B15 2TT, Edgbaston, England", 
              "id": "http://www.grid.ac/institutes/grid.6572.6", 
              "name": [
                "Birmingham Institute of Forest Research, University of Birmingham, B15 2TT, Edgbaston, England", 
                "School of Biological Sciences, University of Birmingham, B15 2TT, Edgbaston, England"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pritchard", 
            "givenName": "J.", 
            "id": "sg:person.015173344075.77", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015173344075.77"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Geography, Earth and Environmental Sciences, University of Birmingham, B15 2TT, Edgbaston, England", 
              "id": "http://www.grid.ac/institutes/grid.6572.6", 
              "name": [
                "Birmingham Institute of Forest Research, University of Birmingham, B15 2TT, Edgbaston, England", 
                "School of Geography, Earth and Environmental Sciences, University of Birmingham, B15 2TT, Edgbaston, England"
              ], 
              "type": "Organization"
            }, 
            "familyName": "MacKenzie", 
            "givenName": "A. R.", 
            "id": "sg:person.015264740035.44", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015264740035.44"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s00425-010-1240-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038438107", 
              "https://doi.org/10.1007/s00425-010-1240-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nclimate2621", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041671822", 
              "https://doi.org/10.1038/nclimate2621"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11099-009-0031-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004694071", 
              "https://doi.org/10.1007/s11099-009-0031-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00468-017-1625-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092415598", 
              "https://doi.org/10.1007/s00468-017-1625-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00442-012-2279-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014345233", 
              "https://doi.org/10.1007/s00442-012-2279-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/pl00009663", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000945667", 
              "https://doi.org/10.1007/pl00009663"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1051/forest/2010020", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056968248", 
              "https://doi.org/10.1051/forest/2010020"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11120-006-9077-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014577193", 
              "https://doi.org/10.1007/s11120-006-9077-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00317729", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013379511", 
              "https://doi.org/10.1007/bf00317729"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00566972", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038273956", 
              "https://doi.org/10.1007/bf00566972"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00484-003-0173-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035035389", 
              "https://doi.org/10.1007/s00484-003-0173-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00468-021-02173-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1139740540", 
              "https://doi.org/10.1007/s00468-021-02173-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00032301", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033344812", 
              "https://doi.org/10.1007/bf00032301"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41558-019-0545-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1120281029", 
              "https://doi.org/10.1038/s41558-019-0545-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-94-017-7291-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045553748", 
              "https://doi.org/10.1007/978-94-017-7291-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-662-05214-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1109712149", 
              "https://doi.org/10.1007/978-3-662-05214-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nclimate3235", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084128764", 
              "https://doi.org/10.1038/nclimate3235"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s13595-020-00940-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1125835972", 
              "https://doi.org/10.1007/s13595-020-00940-6"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2022-07-14", 
        "datePublishedReg": "2022-07-14", 
        "description": "Key messageIn mature Q. robur, chlorophyll varied with season and canopy height, whilst eCO2-driven changes were consistent with Marea, highlighting key factors for consideration when scaling photosynthetic processes and canopy N-use.Nitrogen-rich chlorophyll and carotenoid pigments are important in photosynthetic functioning. Photosynthetic pigments have been found to decrease with elevated CO2 (eCO2), but few such studies have been done in aged forest trees. This study aimed to assess the effects of eCO2 (150\u00a0\u03bcmol\u00a0mol\u22121 above ambient) and canopy position on chlorophyll content in mature Quercus robur (Q. robur). Over 5000 in situ chlorophyll absorbance measurements, alongside laboratory chlorophyll extractions, were collected on canopy-dominant Q. robur in the 3rd and 4th season of CO2 fumigation of a free-air CO2 enrichment (FACE) study in central England. Mass-based chlorophyll concentration (Chlmass, mg g\u22121) was significantly higher in the lower canopy compared to upper canopy foliage (P\u2009<\u20090.05). In contrast, significantly higher chlorophyll content (Chlarea, mg m\u22122) was observed in the upper canopy. ECO2 did not affect Chlmass but Chlarea significantly increased, attributable to increased leaf mass per unit area (Marea, g m\u22122). We found no effect of eCO2 on mass-based or area-based nitrogen (Nmass, mg g\u22121 or Narea g m\u22122); however, Narea significantly increased with canopy height, again attributable to Marea. The parallel relationships between Marea, Narea and Chlarea suggest the allocation of N to light harvesting is maintained with eCO2 exposure as well as in the upper canopy, and that increased photosynthetic mass may help regulate the eCO2 variation. An understanding of changes in the light-harvesting machinery with eCO2 will be useful to assess canopy processes and, at larger scales, changes in biogeochemical cycles in future climate scenarios.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s00468-022-02328-7", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.8483282", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1023155", 
            "issn": [
              "0931-1890", 
              "1432-2285"
            ], 
            "name": "Trees", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }
        ], 
        "keywords": [
          "effects of eCO2", 
          "elevated CO2", 
          "chlorophyll content", 
          "upper canopy", 
          "free-air CO2 enrichment (FACE) study", 
          "Q. robur", 
          "chlorophyll concentration", 
          "CO2 enrichment studies", 
          "upper canopy foliage", 
          "higher chlorophyll content", 
          "vertical canopy profile", 
          "area-based nitrogen", 
          "future climate scenarios", 
          "N use", 
          "light-harvesting machinery", 
          "forest trees", 
          "CO2 fumigation", 
          "canopy foliage", 
          "lower canopy", 
          "leaf mass", 
          "canopy height", 
          "Quercus trees", 
          "photosynthetic pigments", 
          "canopy processes", 
          "canopy profile", 
          "photosynthetic functioning", 
          "unit area", 
          "climate scenarios", 
          "Quercus robur", 
          "canopy", 
          "photosynthetic processes", 
          "photosynthetic mass", 
          "robur", 
          "chlorophyll extraction", 
          "Narea", 
          "season", 
          "biogeochemical cycles", 
          "carotenoid pigments", 
          "enrichment studies", 
          "trees", 
          "nitrogen", 
          "chlorophyll", 
          "central England", 
          "height", 
          "foliage", 
          "eCO2", 
          "fumigation", 
          "harvesting", 
          "pigments", 
          "content", 
          "light harvesting", 
          "machinery", 
          "large scale", 
          "key factors", 
          "such studies", 
          "understanding of changes", 
          "CO2", 
          "area", 
          "changes", 
          "concentration", 
          "variation", 
          "effect", 
          "allocation", 
          "study", 
          "scenarios", 
          "contrast", 
          "understanding", 
          "cycle", 
          "mass", 
          "process", 
          "England", 
          "parallel relationship", 
          "factors", 
          "profile", 
          "functioning", 
          "exposure", 
          "scale", 
          "Marea", 
          "relationship", 
          "position", 
          "consideration", 
          "absorbance measurements", 
          "extraction", 
          "measurements"
        ], 
        "name": "Are chlorophyll concentrations and nitrogen across the vertical canopy profile affected by elevated CO2 in mature Quercus trees?", 
        "pagination": "1-13", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1149471896"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00468-022-02328-7"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00468-022-02328-7", 
          "https://app.dimensions.ai/details/publication/pub.1149471896"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-12-01T06:44", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_946.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s00468-022-02328-7"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00468-022-02328-7'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00468-022-02328-7'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00468-022-02328-7'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00468-022-02328-7'


     

    This table displays all metadata directly associated to this object as RDF triples.

    236 TRIPLES      21 PREDICATES      124 URIs      98 LITERALS      4 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00468-022-02328-7 schema:about anzsrc-for:06
    2 anzsrc-for:0607
    3 schema:author N1271a666f932489c8c19d9ecbb175b0e
    4 schema:citation sg:pub.10.1007/978-3-662-05214-3
    5 sg:pub.10.1007/978-94-017-7291-4
    6 sg:pub.10.1007/bf00032301
    7 sg:pub.10.1007/bf00317729
    8 sg:pub.10.1007/bf00566972
    9 sg:pub.10.1007/pl00009663
    10 sg:pub.10.1007/s00425-010-1240-8
    11 sg:pub.10.1007/s00442-012-2279-y
    12 sg:pub.10.1007/s00468-017-1625-4
    13 sg:pub.10.1007/s00468-021-02173-0
    14 sg:pub.10.1007/s00484-003-0173-3
    15 sg:pub.10.1007/s11099-009-0031-6
    16 sg:pub.10.1007/s11120-006-9077-5
    17 sg:pub.10.1007/s13595-020-00940-6
    18 sg:pub.10.1038/nclimate2621
    19 sg:pub.10.1038/nclimate3235
    20 sg:pub.10.1038/s41558-019-0545-2
    21 sg:pub.10.1051/forest/2010020
    22 schema:datePublished 2022-07-14
    23 schema:datePublishedReg 2022-07-14
    24 schema:description Key messageIn mature Q. robur, chlorophyll varied with season and canopy height, whilst eCO2-driven changes were consistent with Marea, highlighting key factors for consideration when scaling photosynthetic processes and canopy N-use.Nitrogen-rich chlorophyll and carotenoid pigments are important in photosynthetic functioning. Photosynthetic pigments have been found to decrease with elevated CO2 (eCO2), but few such studies have been done in aged forest trees. This study aimed to assess the effects of eCO2 (150 μmol mol−1 above ambient) and canopy position on chlorophyll content in mature Quercus robur (Q. robur). Over 5000 in situ chlorophyll absorbance measurements, alongside laboratory chlorophyll extractions, were collected on canopy-dominant Q. robur in the 3rd and 4th season of CO2 fumigation of a free-air CO2 enrichment (FACE) study in central England. Mass-based chlorophyll concentration (Chlmass, mg g−1) was significantly higher in the lower canopy compared to upper canopy foliage (P < 0.05). In contrast, significantly higher chlorophyll content (Chlarea, mg m−2) was observed in the upper canopy. ECO2 did not affect Chlmass but Chlarea significantly increased, attributable to increased leaf mass per unit area (Marea, g m−2). We found no effect of eCO2 on mass-based or area-based nitrogen (Nmass, mg g−1 or Narea g m−2); however, Narea significantly increased with canopy height, again attributable to Marea. The parallel relationships between Marea, Narea and Chlarea suggest the allocation of N to light harvesting is maintained with eCO2 exposure as well as in the upper canopy, and that increased photosynthetic mass may help regulate the eCO2 variation. An understanding of changes in the light-harvesting machinery with eCO2 will be useful to assess canopy processes and, at larger scales, changes in biogeochemical cycles in future climate scenarios.
    25 schema:genre article
    26 schema:isAccessibleForFree true
    27 schema:isPartOf sg:journal.1023155
    28 schema:keywords CO2
    29 CO2 enrichment studies
    30 CO2 fumigation
    31 England
    32 Marea
    33 N use
    34 Narea
    35 Q. robur
    36 Quercus robur
    37 Quercus trees
    38 absorbance measurements
    39 allocation
    40 area
    41 area-based nitrogen
    42 biogeochemical cycles
    43 canopy
    44 canopy foliage
    45 canopy height
    46 canopy processes
    47 canopy profile
    48 carotenoid pigments
    49 central England
    50 changes
    51 chlorophyll
    52 chlorophyll concentration
    53 chlorophyll content
    54 chlorophyll extraction
    55 climate scenarios
    56 concentration
    57 consideration
    58 content
    59 contrast
    60 cycle
    61 eCO2
    62 effect
    63 effects of eCO2
    64 elevated CO2
    65 enrichment studies
    66 exposure
    67 extraction
    68 factors
    69 foliage
    70 forest trees
    71 free-air CO2 enrichment (FACE) study
    72 fumigation
    73 functioning
    74 future climate scenarios
    75 harvesting
    76 height
    77 higher chlorophyll content
    78 key factors
    79 large scale
    80 leaf mass
    81 light harvesting
    82 light-harvesting machinery
    83 lower canopy
    84 machinery
    85 mass
    86 measurements
    87 nitrogen
    88 parallel relationship
    89 photosynthetic functioning
    90 photosynthetic mass
    91 photosynthetic pigments
    92 photosynthetic processes
    93 pigments
    94 position
    95 process
    96 profile
    97 relationship
    98 robur
    99 scale
    100 scenarios
    101 season
    102 study
    103 such studies
    104 trees
    105 understanding
    106 understanding of changes
    107 unit area
    108 upper canopy
    109 upper canopy foliage
    110 variation
    111 vertical canopy profile
    112 schema:name Are chlorophyll concentrations and nitrogen across the vertical canopy profile affected by elevated CO2 in mature Quercus trees?
    113 schema:pagination 1-13
    114 schema:productId Na01e22a118ba4eaf8c681dabb030a497
    115 Nae63ed8219ca49c8a65002d3201b979f
    116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1149471896
    117 https://doi.org/10.1007/s00468-022-02328-7
    118 schema:sdDatePublished 2022-12-01T06:44
    119 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    120 schema:sdPublisher Na6f855b9eacb49ba86043b8822bc6c4d
    121 schema:url https://doi.org/10.1007/s00468-022-02328-7
    122 sgo:license sg:explorer/license/
    123 sgo:sdDataset articles
    124 rdf:type schema:ScholarlyArticle
    125 N1271a666f932489c8c19d9ecbb175b0e rdf:first sg:person.010612501075.16
    126 rdf:rest N16279e3d8afb41459edbcaa9692d0119
    127 N16279e3d8afb41459edbcaa9692d0119 rdf:first sg:person.0774774130.01
    128 rdf:rest N57b790f818d245e989f6fbe940d18c50
    129 N57b790f818d245e989f6fbe940d18c50 rdf:first sg:person.015173344075.77
    130 rdf:rest Nabe0f4c52a494bd3bf2119efe75097e3
    131 Na01e22a118ba4eaf8c681dabb030a497 schema:name doi
    132 schema:value 10.1007/s00468-022-02328-7
    133 rdf:type schema:PropertyValue
    134 Na6f855b9eacb49ba86043b8822bc6c4d schema:name Springer Nature - SN SciGraph project
    135 rdf:type schema:Organization
    136 Nabe0f4c52a494bd3bf2119efe75097e3 rdf:first sg:person.015264740035.44
    137 rdf:rest rdf:nil
    138 Nae63ed8219ca49c8a65002d3201b979f schema:name dimensions_id
    139 schema:value pub.1149471896
    140 rdf:type schema:PropertyValue
    141 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    142 schema:name Biological Sciences
    143 rdf:type schema:DefinedTerm
    144 anzsrc-for:0607 schema:inDefinedTermSet anzsrc-for:
    145 schema:name Plant Biology
    146 rdf:type schema:DefinedTerm
    147 sg:grant.8483282 http://pending.schema.org/fundedItem sg:pub.10.1007/s00468-022-02328-7
    148 rdf:type schema:MonetaryGrant
    149 sg:journal.1023155 schema:issn 0931-1890
    150 1432-2285
    151 schema:name Trees
    152 schema:publisher Springer Nature
    153 rdf:type schema:Periodical
    154 sg:person.010612501075.16 schema:affiliation grid-institutes:grid.6572.6
    155 schema:familyName Gardner
    156 schema:givenName A.
    157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010612501075.16
    158 rdf:type schema:Person
    159 sg:person.015173344075.77 schema:affiliation grid-institutes:grid.6572.6
    160 schema:familyName Pritchard
    161 schema:givenName J.
    162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015173344075.77
    163 rdf:type schema:Person
    164 sg:person.015264740035.44 schema:affiliation grid-institutes:grid.6572.6
    165 schema:familyName MacKenzie
    166 schema:givenName A. R.
    167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015264740035.44
    168 rdf:type schema:Person
    169 sg:person.0774774130.01 schema:affiliation grid-institutes:grid.1029.a
    170 schema:familyName Ellsworth
    171 schema:givenName D. S.
    172 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0774774130.01
    173 rdf:type schema:Person
    174 sg:pub.10.1007/978-3-662-05214-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109712149
    175 https://doi.org/10.1007/978-3-662-05214-3
    176 rdf:type schema:CreativeWork
    177 sg:pub.10.1007/978-94-017-7291-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045553748
    178 https://doi.org/10.1007/978-94-017-7291-4
    179 rdf:type schema:CreativeWork
    180 sg:pub.10.1007/bf00032301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033344812
    181 https://doi.org/10.1007/bf00032301
    182 rdf:type schema:CreativeWork
    183 sg:pub.10.1007/bf00317729 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013379511
    184 https://doi.org/10.1007/bf00317729
    185 rdf:type schema:CreativeWork
    186 sg:pub.10.1007/bf00566972 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038273956
    187 https://doi.org/10.1007/bf00566972
    188 rdf:type schema:CreativeWork
    189 sg:pub.10.1007/pl00009663 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000945667
    190 https://doi.org/10.1007/pl00009663
    191 rdf:type schema:CreativeWork
    192 sg:pub.10.1007/s00425-010-1240-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038438107
    193 https://doi.org/10.1007/s00425-010-1240-8
    194 rdf:type schema:CreativeWork
    195 sg:pub.10.1007/s00442-012-2279-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1014345233
    196 https://doi.org/10.1007/s00442-012-2279-y
    197 rdf:type schema:CreativeWork
    198 sg:pub.10.1007/s00468-017-1625-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092415598
    199 https://doi.org/10.1007/s00468-017-1625-4
    200 rdf:type schema:CreativeWork
    201 sg:pub.10.1007/s00468-021-02173-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1139740540
    202 https://doi.org/10.1007/s00468-021-02173-0
    203 rdf:type schema:CreativeWork
    204 sg:pub.10.1007/s00484-003-0173-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035035389
    205 https://doi.org/10.1007/s00484-003-0173-3
    206 rdf:type schema:CreativeWork
    207 sg:pub.10.1007/s11099-009-0031-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004694071
    208 https://doi.org/10.1007/s11099-009-0031-6
    209 rdf:type schema:CreativeWork
    210 sg:pub.10.1007/s11120-006-9077-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014577193
    211 https://doi.org/10.1007/s11120-006-9077-5
    212 rdf:type schema:CreativeWork
    213 sg:pub.10.1007/s13595-020-00940-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1125835972
    214 https://doi.org/10.1007/s13595-020-00940-6
    215 rdf:type schema:CreativeWork
    216 sg:pub.10.1038/nclimate2621 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041671822
    217 https://doi.org/10.1038/nclimate2621
    218 rdf:type schema:CreativeWork
    219 sg:pub.10.1038/nclimate3235 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084128764
    220 https://doi.org/10.1038/nclimate3235
    221 rdf:type schema:CreativeWork
    222 sg:pub.10.1038/s41558-019-0545-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1120281029
    223 https://doi.org/10.1038/s41558-019-0545-2
    224 rdf:type schema:CreativeWork
    225 sg:pub.10.1051/forest/2010020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056968248
    226 https://doi.org/10.1051/forest/2010020
    227 rdf:type schema:CreativeWork
    228 grid-institutes:grid.1029.a schema:alternateName Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, 2751, Penrith, NSW, Australia
    229 schema:name Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, 2751, Penrith, NSW, Australia
    230 rdf:type schema:Organization
    231 grid-institutes:grid.6572.6 schema:alternateName School of Biological Sciences, University of Birmingham, B15 2TT, Edgbaston, England
    232 School of Geography, Earth and Environmental Sciences, University of Birmingham, B15 2TT, Edgbaston, England
    233 schema:name Birmingham Institute of Forest Research, University of Birmingham, B15 2TT, Edgbaston, England
    234 School of Biological Sciences, University of Birmingham, B15 2TT, Edgbaston, England
    235 School of Geography, Earth and Environmental Sciences, University of Birmingham, B15 2TT, Edgbaston, England
    236 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...