Stable carbon and nitrogen isotope ratios of Eucalyptus and Acacia species along a seasonal rainfall gradient in Western Australia View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2014-08

AUTHORS

E. D. Schulze, D. Nicolle, A. Boerner, M. Lauerer, G. Aas, I. Schulze

ABSTRACT

EucalyptusandAcaciaspecies were surprisingly similar with respect to variations in δ13C, δ15N. Both genera respond with speciation and associated changes in leaf structure to drought. Stable carbon and nitrogen isotope ratios (δ13C and δ15N) in leaves of eucalypts (Corymbia and Eucalyptus) and Acacia (and some additional Fabaceae) species were investigated together with specific leaf area (SLA), leaf nitrogen (N) and leaf phosphorous (P) concentration along a north–south transect through Western Australia covering winter- and summer-dominated rainfall between 100 and 1,200 mm annually. We investigated 62 eucalypts and 78 woody Fabaceae species, mainly of the genus Acacia. Leaf δ13C values of Eucalyptus and Acacia species generally increased linearly with latitude from −29.5 ± 1.3 ‰ in the summer-dominated rainfall zone (15°S–18°S) to about −25.7 ± 1.1 ‰ in the winter-dominated rainfall zone (29°S–31°S). δ15N increased initially with southern latitudes (0.5 ± 1.6 ‰ at 15°S; 5.8 ± 3.3 ‰ at 24–29°S) but decreased again further South (4.6 ± 3.5 ‰ at 31°S). The variation in δ13C and δ15N was probably due to speciation of Eucalyptus and Acacia into very local populations. There were no species that were distributed over the whole sampling area. The variation in leaf traits was larger between species than within species. Average nitrogen concentrations were 11.9 ± 1.05 mg g−1 in Eucalyptus, and were 18.7 ± 4.1 mg g−1 in Acacia. Even though the average nitrogen concentration was higher in Acacia than Eucalyptus, δ15N gave no clear indication for N2 fixation in Acacia. In a multiple regression, latitude (as a surrogate for rainfall seasonality), mean rainfall, leaf nitrogen concentration, specific leaf area and nitrogen fixation were significant and explained 69 % of the variation of δ13C, but only 36 % of the variation of δ15N. Higher nitrogen and phosphorus concentration could give Acacia an advantage over Eucalyptus in arid regions of undefined rainfall seasonality. More... »

PAGES

1125-1135

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00468-014-1023-0

DOI

http://dx.doi.org/10.1007/s00468-014-1023-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1013618269


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0602", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Ecology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for Biogeochemistry", 
          "id": "https://www.grid.ac/institutes/grid.419500.9", 
          "name": [
            "Max Planck Institute for Biogeochemistry, Box 100164, 07701, Jena, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schulze", 
        "givenName": "E. D.", 
        "id": "sg:person.0654066337.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0654066337.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Currency Creek Arboretum, PO Box 808, 5039, Melrose Park, SA, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nicolle", 
        "givenName": "D.", 
        "id": "sg:person.01145144076.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01145144076.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Currency Creek Arboretum, PO Box 808, 5039, Melrose Park, SA, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Boerner", 
        "givenName": "A.", 
        "id": "sg:person.010727524705.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010727524705.86"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Bayreuth", 
          "id": "https://www.grid.ac/institutes/grid.7384.8", 
          "name": [
            "\u00d6kologisch Botanischer Garten, University of Bayreuth, 95440, Bayreuth, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lauerer", 
        "givenName": "M.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Bayreuth", 
          "id": "https://www.grid.ac/institutes/grid.7384.8", 
          "name": [
            "\u00d6kologisch Botanischer Garten, University of Bayreuth, 95440, Bayreuth, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Aas", 
        "givenName": "G.", 
        "id": "sg:person.01325111431.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01325111431.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for Biogeochemistry", 
          "id": "https://www.grid.ac/institutes/grid.419500.9", 
          "name": [
            "Max Planck Institute for Biogeochemistry, Box 100164, 07701, Jena, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schulze", 
        "givenName": "I.", 
        "id": "sg:person.01160045327.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01160045327.75"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1111/j.1399-3054.2007.01027.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002659884"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1071/pp9820121", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003631144"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1365-2435.2001.00508.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006527381"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-3498-2_21", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009968919", 
          "https://doi.org/10.1007/978-1-4612-3498-2_21"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-3498-2_21", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009968919", 
          "https://doi.org/10.1007/978-1-4612-3498-2_21"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1071/pp98144", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017603276"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00442-013-2665-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022172718", 
          "https://doi.org/10.1007/s00442-013-2665-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1071/pp9950051", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026718738"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/treephys/26.4.479", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032227550"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-3498-2_2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036315225", 
          "https://doi.org/10.1007/978-1-4612-3498-2_2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-3498-2_2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036315225", 
          "https://doi.org/10.1007/978-1-4612-3498-2_2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1442-9993.2001.01150.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036596880"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/treephys/tpq029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039868113"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/treephys/tpq029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039868113"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1071/pp97113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040532570"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-3498-2_20", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042516666", 
          "https://doi.org/10.1007/978-1-4612-3498-2_20"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-3498-2_20", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042516666", 
          "https://doi.org/10.1007/978-1-4612-3498-2_20"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1399-3054.2006.00682.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043953906"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-08", 
    "datePublishedReg": "2014-08-01", 
    "description": "EucalyptusandAcaciaspecies were surprisingly similar with respect to variations in \u03b413C, \u03b415N. Both genera respond with speciation and associated changes in leaf structure to drought. Stable carbon and nitrogen isotope ratios (\u03b413C and \u03b415N) in leaves of eucalypts (Corymbia and Eucalyptus) and Acacia (and some additional Fabaceae) species were investigated together with specific leaf area (SLA), leaf nitrogen (N) and leaf phosphorous (P) concentration along a north\u2013south transect through Western Australia covering winter- and summer-dominated rainfall between 100 and 1,200 mm annually. We investigated 62 eucalypts and 78 woody Fabaceae species, mainly of the genus Acacia. Leaf \u03b413C values of Eucalyptus and Acacia species generally increased linearly with latitude from \u221229.5 \u00b1 1.3 \u2030 in the summer-dominated rainfall zone (15\u00b0S\u201318\u00b0S) to about \u221225.7 \u00b1 1.1 \u2030 in the winter-dominated rainfall zone (29\u00b0S\u201331\u00b0S). \u03b415N increased initially with southern latitudes (0.5 \u00b1 1.6 \u2030 at 15\u00b0S; 5.8 \u00b1 3.3 \u2030 at 24\u201329\u00b0S) but decreased again further South (4.6 \u00b1 3.5 \u2030 at 31\u00b0S). The variation in \u03b413C and \u03b415N was probably due to speciation of Eucalyptus and Acacia into very local populations. There were no species that were distributed over the whole sampling area. The variation in leaf traits was larger between species than within species. Average nitrogen concentrations were 11.9 \u00b1 1.05 mg g\u22121 in Eucalyptus, and were 18.7 \u00b1 4.1 mg g\u22121 in Acacia. Even though the average nitrogen concentration was higher in Acacia than Eucalyptus, \u03b415N gave no clear indication for N2 fixation in Acacia. In a multiple regression, latitude (as a surrogate for rainfall seasonality), mean rainfall, leaf nitrogen concentration, specific leaf area and nitrogen fixation were significant and explained 69 % of the variation of \u03b413C, but only 36 % of the variation of \u03b415N. Higher nitrogen and phosphorus concentration could give Acacia an advantage over Eucalyptus in arid regions of undefined rainfall seasonality.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00468-014-1023-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1023155", 
        "issn": [
          "0931-1890", 
          "1432-2285"
        ], 
        "name": "Trees", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "28"
      }
    ], 
    "name": "Stable carbon and nitrogen isotope ratios of Eucalyptus and Acacia species along a seasonal rainfall gradient in Western Australia", 
    "pagination": "1125-1135", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "40dfe63f2157a17d1c75cd612f621c1e1b24506a55d028111b335dd55a381cdf"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00468-014-1023-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1013618269"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00468-014-1023-0", 
      "https://app.dimensions.ai/details/publication/pub.1013618269"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T17:31", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000511.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00468-014-1023-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00468-014-1023-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00468-014-1023-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00468-014-1023-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00468-014-1023-0'


 

This table displays all metadata directly associated to this object as RDF triples.

148 TRIPLES      21 PREDICATES      41 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00468-014-1023-0 schema:about anzsrc-for:06
2 anzsrc-for:0602
3 schema:author Nc8639d28e1d34e73932ef17464ddcacf
4 schema:citation sg:pub.10.1007/978-1-4612-3498-2_2
5 sg:pub.10.1007/978-1-4612-3498-2_20
6 sg:pub.10.1007/978-1-4612-3498-2_21
7 sg:pub.10.1007/s00442-013-2665-0
8 https://doi.org/10.1046/j.1365-2435.2001.00508.x
9 https://doi.org/10.1046/j.1442-9993.2001.01150.x
10 https://doi.org/10.1071/pp97113
11 https://doi.org/10.1071/pp98144
12 https://doi.org/10.1071/pp9820121
13 https://doi.org/10.1071/pp9950051
14 https://doi.org/10.1093/treephys/26.4.479
15 https://doi.org/10.1093/treephys/tpq029
16 https://doi.org/10.1111/j.1399-3054.2006.00682.x
17 https://doi.org/10.1111/j.1399-3054.2007.01027.x
18 schema:datePublished 2014-08
19 schema:datePublishedReg 2014-08-01
20 schema:description EucalyptusandAcaciaspecies were surprisingly similar with respect to variations in δ13C, δ15N. Both genera respond with speciation and associated changes in leaf structure to drought. Stable carbon and nitrogen isotope ratios (δ13C and δ15N) in leaves of eucalypts (Corymbia and Eucalyptus) and Acacia (and some additional Fabaceae) species were investigated together with specific leaf area (SLA), leaf nitrogen (N) and leaf phosphorous (P) concentration along a north–south transect through Western Australia covering winter- and summer-dominated rainfall between 100 and 1,200 mm annually. We investigated 62 eucalypts and 78 woody Fabaceae species, mainly of the genus Acacia. Leaf δ13C values of Eucalyptus and Acacia species generally increased linearly with latitude from −29.5 ± 1.3 ‰ in the summer-dominated rainfall zone (15°S–18°S) to about −25.7 ± 1.1 ‰ in the winter-dominated rainfall zone (29°S–31°S). δ15N increased initially with southern latitudes (0.5 ± 1.6 ‰ at 15°S; 5.8 ± 3.3 ‰ at 24–29°S) but decreased again further South (4.6 ± 3.5 ‰ at 31°S). The variation in δ13C and δ15N was probably due to speciation of Eucalyptus and Acacia into very local populations. There were no species that were distributed over the whole sampling area. The variation in leaf traits was larger between species than within species. Average nitrogen concentrations were 11.9 ± 1.05 mg g−1 in Eucalyptus, and were 18.7 ± 4.1 mg g−1 in Acacia. Even though the average nitrogen concentration was higher in Acacia than Eucalyptus, δ15N gave no clear indication for N2 fixation in Acacia. In a multiple regression, latitude (as a surrogate for rainfall seasonality), mean rainfall, leaf nitrogen concentration, specific leaf area and nitrogen fixation were significant and explained 69 % of the variation of δ13C, but only 36 % of the variation of δ15N. Higher nitrogen and phosphorus concentration could give Acacia an advantage over Eucalyptus in arid regions of undefined rainfall seasonality.
21 schema:genre research_article
22 schema:inLanguage en
23 schema:isAccessibleForFree false
24 schema:isPartOf N93ac1f632f094c1fbfdcc87a095782d6
25 Ne5cc458f08184577a943e11f05dbfea0
26 sg:journal.1023155
27 schema:name Stable carbon and nitrogen isotope ratios of Eucalyptus and Acacia species along a seasonal rainfall gradient in Western Australia
28 schema:pagination 1125-1135
29 schema:productId N94013489b61942f9bf9da4179dced790
30 Nb425950f3367402b8c34c621c8bee5f7
31 Nfaf02997f0424c37b1ff17405d031ce9
32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013618269
33 https://doi.org/10.1007/s00468-014-1023-0
34 schema:sdDatePublished 2019-04-10T17:31
35 schema:sdLicense https://scigraph.springernature.com/explorer/license/
36 schema:sdPublisher N5bb2102f11a84a41bc929f31398e9202
37 schema:url http://link.springer.com/10.1007%2Fs00468-014-1023-0
38 sgo:license sg:explorer/license/
39 sgo:sdDataset articles
40 rdf:type schema:ScholarlyArticle
41 N11f5985d51e4482bbcf7d12b32cb76b3 schema:name Currency Creek Arboretum, PO Box 808, 5039, Melrose Park, SA, Australia
42 rdf:type schema:Organization
43 N1e30feac3cdb4f3583b0f2f29ba51a35 schema:name Currency Creek Arboretum, PO Box 808, 5039, Melrose Park, SA, Australia
44 rdf:type schema:Organization
45 N2b522924b5e5400eb822c3cda454b3af rdf:first sg:person.01160045327.75
46 rdf:rest rdf:nil
47 N4fb2fa1e0b5c456daf67870a811fc67e rdf:first Ne5cf39434a864e51a26aad9a4756e5d9
48 rdf:rest Nbff8984210664c0f860ef3da9719ba4f
49 N5bb2102f11a84a41bc929f31398e9202 schema:name Springer Nature - SN SciGraph project
50 rdf:type schema:Organization
51 N93ac1f632f094c1fbfdcc87a095782d6 schema:issueNumber 4
52 rdf:type schema:PublicationIssue
53 N94013489b61942f9bf9da4179dced790 schema:name readcube_id
54 schema:value 40dfe63f2157a17d1c75cd612f621c1e1b24506a55d028111b335dd55a381cdf
55 rdf:type schema:PropertyValue
56 Na2084b8e678d4013ba400304fc1360ca rdf:first sg:person.01145144076.03
57 rdf:rest Na319ffc3ae5a4064a1b4d7573ce8cee6
58 Na319ffc3ae5a4064a1b4d7573ce8cee6 rdf:first sg:person.010727524705.86
59 rdf:rest N4fb2fa1e0b5c456daf67870a811fc67e
60 Nb425950f3367402b8c34c621c8bee5f7 schema:name doi
61 schema:value 10.1007/s00468-014-1023-0
62 rdf:type schema:PropertyValue
63 Nbff8984210664c0f860ef3da9719ba4f rdf:first sg:person.01325111431.16
64 rdf:rest N2b522924b5e5400eb822c3cda454b3af
65 Nc8639d28e1d34e73932ef17464ddcacf rdf:first sg:person.0654066337.20
66 rdf:rest Na2084b8e678d4013ba400304fc1360ca
67 Ne5cc458f08184577a943e11f05dbfea0 schema:volumeNumber 28
68 rdf:type schema:PublicationVolume
69 Ne5cf39434a864e51a26aad9a4756e5d9 schema:affiliation https://www.grid.ac/institutes/grid.7384.8
70 schema:familyName Lauerer
71 schema:givenName M.
72 rdf:type schema:Person
73 Nfaf02997f0424c37b1ff17405d031ce9 schema:name dimensions_id
74 schema:value pub.1013618269
75 rdf:type schema:PropertyValue
76 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
77 schema:name Biological Sciences
78 rdf:type schema:DefinedTerm
79 anzsrc-for:0602 schema:inDefinedTermSet anzsrc-for:
80 schema:name Ecology
81 rdf:type schema:DefinedTerm
82 sg:journal.1023155 schema:issn 0931-1890
83 1432-2285
84 schema:name Trees
85 rdf:type schema:Periodical
86 sg:person.010727524705.86 schema:affiliation N1e30feac3cdb4f3583b0f2f29ba51a35
87 schema:familyName Boerner
88 schema:givenName A.
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010727524705.86
90 rdf:type schema:Person
91 sg:person.01145144076.03 schema:affiliation N11f5985d51e4482bbcf7d12b32cb76b3
92 schema:familyName Nicolle
93 schema:givenName D.
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01145144076.03
95 rdf:type schema:Person
96 sg:person.01160045327.75 schema:affiliation https://www.grid.ac/institutes/grid.419500.9
97 schema:familyName Schulze
98 schema:givenName I.
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01160045327.75
100 rdf:type schema:Person
101 sg:person.01325111431.16 schema:affiliation https://www.grid.ac/institutes/grid.7384.8
102 schema:familyName Aas
103 schema:givenName G.
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01325111431.16
105 rdf:type schema:Person
106 sg:person.0654066337.20 schema:affiliation https://www.grid.ac/institutes/grid.419500.9
107 schema:familyName Schulze
108 schema:givenName E. D.
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0654066337.20
110 rdf:type schema:Person
111 sg:pub.10.1007/978-1-4612-3498-2_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036315225
112 https://doi.org/10.1007/978-1-4612-3498-2_2
113 rdf:type schema:CreativeWork
114 sg:pub.10.1007/978-1-4612-3498-2_20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042516666
115 https://doi.org/10.1007/978-1-4612-3498-2_20
116 rdf:type schema:CreativeWork
117 sg:pub.10.1007/978-1-4612-3498-2_21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009968919
118 https://doi.org/10.1007/978-1-4612-3498-2_21
119 rdf:type schema:CreativeWork
120 sg:pub.10.1007/s00442-013-2665-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022172718
121 https://doi.org/10.1007/s00442-013-2665-0
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1046/j.1365-2435.2001.00508.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1006527381
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1046/j.1442-9993.2001.01150.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1036596880
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1071/pp97113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040532570
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1071/pp98144 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017603276
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1071/pp9820121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003631144
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1071/pp9950051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026718738
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1093/treephys/26.4.479 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032227550
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1093/treephys/tpq029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039868113
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1111/j.1399-3054.2006.00682.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1043953906
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1111/j.1399-3054.2007.01027.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1002659884
142 rdf:type schema:CreativeWork
143 https://www.grid.ac/institutes/grid.419500.9 schema:alternateName Max Planck Institute for Biogeochemistry
144 schema:name Max Planck Institute for Biogeochemistry, Box 100164, 07701, Jena, Germany
145 rdf:type schema:Organization
146 https://www.grid.ac/institutes/grid.7384.8 schema:alternateName University of Bayreuth
147 schema:name Ökologisch Botanischer Garten, University of Bayreuth, 95440, Bayreuth, Germany
148 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...