Associations of body mass index (BMI) and BMI change with progression of chronic kidney disease in children View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2022-08-26

AUTHORS

Amy J. Kogon, Jennifer Roem, Michael F. Schneider, Mark M. Mitsnefes, Babette S. Zemel, Bradley A. Warady, Susan L. Furth, Nancy M. Rodig

ABSTRACT

BackgroundObesity is prevalent among children with chronic kidney disease (CKD) and is associated with cardiovascular disease and reduced quality of life. Its relationship with pediatric CKD progression has not been described.MethodsWe evaluated relationships between both body mass index (BMI) category (normal, overweight, obese) and BMI z-score (BMIz) change on CKD progression among participants of the Chronic Kidney Disease in Children study. Kaplan–Meier survival curves and multivariable parametric failure time models depict the association of baseline BMI category on time to kidney replacement therapy (KRT). Additionally, the annualized percentage change in estimated glomerular filtration rate (eGFR) was modeled against concurrent change in BMIz using multivariable linear regression with generalized estimating equations which allowed for quantification of the effect of BMIz change on annualized eGFR change.ResultsParticipants had median age of 10.9 years [IQR: 6.5, 14.6], median eGFR of 50 ml/1.73 m2 [IQR: 37, 64] and 63% were male. 160 (27%) of 600 children with non-glomerular and 77 (31%) of 247 children with glomerular CKD progressed to KRT over a median of 5 years [IQR: 2, 8]. Times to KRT were not significantly associated with baseline BMI category. Children with non-glomerular CKD who were obese experienced significant improvement in eGFR (+ 0.62%; 95% CI: + 0.17%, + 1.08%) for every 0.1 standard deviation concurrent decrease in BMI. In participants with glomerular CKD who were obese, BMIz change was not significantly associated with annualized eGFR change.ConclusionObesity may represent a target of intervention to improve kidney function in children with non-glomerular CKD.Graphical abstractA higher resolution version of the Graphical abstract is available as Supplementary information More... »

PAGES

1-10

References to SciGraph publications

  • 2015-06-18. Chronic kidney disease among overweight and obesity with and without metabolic syndrome in an urban Chinese cohort in BMC NEPHROLOGY
  • 2017-03-30. Obesity in pediatric kidney transplant recipients and the risks of acute rejection, graft loss and death in PEDIATRIC NEPHROLOGY
  • 2019-07-02. Obesity is not associated with progression to end stage renal disease in patients with biopsy-proven glomerular diseases in BMC NEPHROLOGY
  • 2021-01-21. Longitudinal outcomes of body mass index in overweight and obese children with chronic kidney disease in PEDIATRIC NEPHROLOGY
  • 2007-09-20. Pediatric nephrology patients are overweight: 20 years' experience in a single Canadian tertiary pediatric nephrology clinic in INTERNATIONAL UROLOGY AND NEPHROLOGY
  • 2017-12-30. Effects of obesity and metabolic syndrome on cardiovascular outcomes in pediatric kidney transplant recipients: a longitudinal study in PEDIATRIC NEPHROLOGY
  • 2015-12-18. Physical activity and screen time in adolescents in the chronic kidney disease in children (CKiD) cohort in PEDIATRIC NEPHROLOGY
  • 2018-03-25. Effect of BMI on allograft function and survival in pediatric renal transplant recipients in PEDIATRIC NEPHROLOGY
  • 2019-05-02. Depression and neurocognitive dysfunction in pediatric and young adult chronic kidney disease in PEDIATRIC NEPHROLOGY
  • 2019-10-29. Exercise therapy improves eGFR, and reduces blood pressure and BMI in non-dialysis CKD patients: evidence from a meta-analysis in BMC NEPHROLOGY
  • 2018-08-22. Outcomes of underweight, overweight, and obese pediatric kidney transplant recipients in PEDIATRIC NEPHROLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00467-022-05655-6

    DOI

    http://dx.doi.org/10.1007/s00467-022-05655-6

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1150508787

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/36018433


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Clinical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Pediatrics, Division of Nephrology, Children\u2019s Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania Philadelphia, Philadelphia, PA, USA", 
              "id": "http://www.grid.ac/institutes/grid.239552.a", 
              "name": [
                "Pediatrics, Division of Nephrology, Children\u2019s Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania Philadelphia, Philadelphia, PA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kogon", 
            "givenName": "Amy J.", 
            "id": "sg:person.0744766701.72", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0744766701.72"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA", 
              "id": "http://www.grid.ac/institutes/grid.21107.35", 
              "name": [
                "Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Roem", 
            "givenName": "Jennifer", 
            "id": "sg:person.016157504320.32", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016157504320.32"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA", 
              "id": "http://www.grid.ac/institutes/grid.21107.35", 
              "name": [
                "Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Schneider", 
            "givenName": "Michael F.", 
            "id": "sg:person.01001100731.80", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01001100731.80"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Pediatrics, Division of Nephrology, Cincinnati Children\u2019s Hospital Medical Center, Cincinnati, OH, USA", 
              "id": "http://www.grid.ac/institutes/grid.239573.9", 
              "name": [
                "Pediatrics, Division of Nephrology, Cincinnati Children\u2019s Hospital Medical Center, Cincinnati, OH, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mitsnefes", 
            "givenName": "Mark M.", 
            "id": "sg:person.01170504126.10", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01170504126.10"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Children\u2019s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA", 
              "id": "http://www.grid.ac/institutes/grid.239552.a", 
              "name": [
                "Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Children\u2019s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zemel", 
            "givenName": "Babette S.", 
            "id": "sg:person.0773506111.36", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0773506111.36"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Pediatrics, Division of Nephrology, Children\u2019s Mercy Kansas City, Kansas City, MO, USA", 
              "id": "http://www.grid.ac/institutes/grid.239559.1", 
              "name": [
                "Pediatrics, Division of Nephrology, Children\u2019s Mercy Kansas City, Kansas City, MO, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Warady", 
            "givenName": "Bradley A.", 
            "id": "sg:person.01355177015.23", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01355177015.23"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Pediatrics, Division of Nephrology, Children\u2019s Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania Philadelphia, Philadelphia, PA, USA", 
              "id": "http://www.grid.ac/institutes/grid.239552.a", 
              "name": [
                "Pediatrics, Division of Nephrology, Children\u2019s Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania Philadelphia, Philadelphia, PA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Furth", 
            "givenName": "Susan L.", 
            "id": "sg:person.01033606022.47", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01033606022.47"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Pediatrics, Division of Nephrology, Boston Children\u2019s Hospital, Boston, MA, USA", 
              "id": "http://www.grid.ac/institutes/grid.2515.3", 
              "name": [
                "Pediatrics, Division of Nephrology, Boston Children\u2019s Hospital, Boston, MA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rodig", 
            "givenName": "Nancy M.", 
            "id": "sg:person.0767307565.06", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0767307565.06"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1186/s12882-015-0083-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031743229", 
              "https://doi.org/10.1186/s12882-015-0083-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00467-019-04265-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1113875380", 
              "https://doi.org/10.1007/s00467-019-04265-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00467-017-3860-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100115973", 
              "https://doi.org/10.1007/s00467-017-3860-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11255-007-9258-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018411514", 
              "https://doi.org/10.1007/s11255-007-9258-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00467-017-3636-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084022266", 
              "https://doi.org/10.1007/s00467-017-3636-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00467-018-4038-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106286933", 
              "https://doi.org/10.1007/s00467-018-4038-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12882-019-1586-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1122170051", 
              "https://doi.org/10.1186/s12882-019-1586-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00467-015-3287-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016472191", 
              "https://doi.org/10.1007/s00467-015-3287-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00467-018-3942-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101746538", 
              "https://doi.org/10.1007/s00467-018-3942-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00467-020-04907-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1134758482", 
              "https://doi.org/10.1007/s00467-020-04907-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12882-019-1434-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1117701927", 
              "https://doi.org/10.1186/s12882-019-1434-7"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2022-08-26", 
        "datePublishedReg": "2022-08-26", 
        "description": "BackgroundObesity is prevalent among children with chronic kidney disease (CKD) and is associated with cardiovascular disease and reduced quality of life. Its relationship with pediatric CKD progression has not been described.MethodsWe evaluated relationships between both body mass index (BMI) category (normal, overweight, obese) and BMI z-score (BMIz) change on CKD progression among participants of the Chronic Kidney Disease in Children study. Kaplan\u2013Meier survival curves and multivariable parametric failure time models depict the association of baseline BMI category on time to kidney replacement therapy (KRT). Additionally, the annualized percentage change in estimated glomerular filtration rate (eGFR) was modeled against concurrent change in BMIz using multivariable linear regression with generalized estimating equations which allowed for quantification of the effect of BMIz change on annualized eGFR change.ResultsParticipants had median age of 10.9\u00a0years [IQR: 6.5, 14.6], median eGFR of 50\u00a0ml/1.73 m2 [IQR: 37, 64] and 63% were male. 160 (27%) of 600 children with non-glomerular and 77 (31%) of 247 children with glomerular CKD progressed to KRT over a median of 5\u00a0years [IQR: 2, 8]. Times to KRT were not significantly associated with baseline BMI category. Children with non-glomerular CKD who were obese experienced significant improvement in eGFR (+\u20090.62%; 95% CI:\u2009+\u20090.17%,\u2009+\u20091.08%) for every 0.1 standard deviation concurrent decrease in BMI. In participants with glomerular CKD who were obese, BMIz change was not significantly associated with annualized eGFR change.ConclusionObesity may represent a target of intervention to improve kidney function in children with non-glomerular CKD.Graphical abstractA higher resolution version of the Graphical abstract is available as Supplementary information", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s00467-022-05655-6", 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.2690131", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.7753178", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.7726542", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2690130", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1097267", 
            "issn": [
              "0931-041X", 
              "1432-198X"
            ], 
            "name": "Pediatric Nephrology", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }
        ], 
        "keywords": [
          "chronic kidney disease", 
          "kidney replacement therapy", 
          "body mass index", 
          "glomerular chronic kidney disease", 
          "baseline BMI category", 
          "kidney disease", 
          "CKD progression", 
          "BMIZ change", 
          "eGFR change", 
          "BMI categories", 
          "Graphical abstractA higher resolution version", 
          "Kaplan-Meier survival curves", 
          "body mass index categories", 
          "BMI z-score change", 
          "glomerular filtration rate", 
          "z-score change", 
          "median eGFR", 
          "median age", 
          "kidney function", 
          "mass index", 
          "BMI change", 
          "replacement therapy", 
          "filtration rate", 
          "cardiovascular disease", 
          "reduced quality", 
          "index categories", 
          "target of intervention", 
          "survival curves", 
          "disease", 
          "percentage change", 
          "parametric failure time models", 
          "progression", 
          "children", 
          "EGFR", 
          "concurrent decrease", 
          "significant improvement", 
          "association", 
          "concurrent changes", 
          "participants", 
          "failure time model", 
          "BackgroundObesity", 
          "linear regression", 
          "ConclusionObesity", 
          "obese", 
          "therapy", 
          "years", 
          "MethodsWe", 
          "BMIz", 
          "ResultsParticipants", 
          "median", 
          "age", 
          "intervention", 
          "changes", 
          "regression", 
          "categories", 
          "index", 
          "target", 
          "decrease", 
          "relationship", 
          "life", 
          "rate", 
          "time", 
          "high-resolution version", 
          "m2", 
          "effect", 
          "improvement", 
          "resolution version", 
          "function", 
          "quality", 
          "quantification", 
          "Graphical Abstract", 
          "curves", 
          "Abstract", 
          "model", 
          "Information Association", 
          "version", 
          "time model", 
          "equations"
        ], 
        "name": "Associations of body mass index (BMI) and BMI change with progression of chronic kidney disease in children", 
        "pagination": "1-10", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1150508787"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00467-022-05655-6"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "36018433"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00467-022-05655-6", 
          "https://app.dimensions.ai/details/publication/pub.1150508787"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-12-01T06:44", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_947.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s00467-022-05655-6"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00467-022-05655-6'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00467-022-05655-6'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00467-022-05655-6'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00467-022-05655-6'


     

    This table displays all metadata directly associated to this object as RDF triples.

    248 TRIPLES      21 PREDICATES      112 URIs      93 LITERALS      5 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00467-022-05655-6 schema:about anzsrc-for:11
    2 anzsrc-for:1103
    3 schema:author N46e9578875cc4b739b3989c6dc08b5c4
    4 schema:citation sg:pub.10.1007/s00467-015-3287-z
    5 sg:pub.10.1007/s00467-017-3636-1
    6 sg:pub.10.1007/s00467-017-3860-8
    7 sg:pub.10.1007/s00467-018-3942-2
    8 sg:pub.10.1007/s00467-018-4038-8
    9 sg:pub.10.1007/s00467-019-04265-z
    10 sg:pub.10.1007/s00467-020-04907-7
    11 sg:pub.10.1007/s11255-007-9258-y
    12 sg:pub.10.1186/s12882-015-0083-8
    13 sg:pub.10.1186/s12882-019-1434-7
    14 sg:pub.10.1186/s12882-019-1586-5
    15 schema:datePublished 2022-08-26
    16 schema:datePublishedReg 2022-08-26
    17 schema:description BackgroundObesity is prevalent among children with chronic kidney disease (CKD) and is associated with cardiovascular disease and reduced quality of life. Its relationship with pediatric CKD progression has not been described.MethodsWe evaluated relationships between both body mass index (BMI) category (normal, overweight, obese) and BMI z-score (BMIz) change on CKD progression among participants of the Chronic Kidney Disease in Children study. Kaplan–Meier survival curves and multivariable parametric failure time models depict the association of baseline BMI category on time to kidney replacement therapy (KRT). Additionally, the annualized percentage change in estimated glomerular filtration rate (eGFR) was modeled against concurrent change in BMIz using multivariable linear regression with generalized estimating equations which allowed for quantification of the effect of BMIz change on annualized eGFR change.ResultsParticipants had median age of 10.9 years [IQR: 6.5, 14.6], median eGFR of 50 ml/1.73 m2 [IQR: 37, 64] and 63% were male. 160 (27%) of 600 children with non-glomerular and 77 (31%) of 247 children with glomerular CKD progressed to KRT over a median of 5 years [IQR: 2, 8]. Times to KRT were not significantly associated with baseline BMI category. Children with non-glomerular CKD who were obese experienced significant improvement in eGFR (+ 0.62%; 95% CI: + 0.17%, + 1.08%) for every 0.1 standard deviation concurrent decrease in BMI. In participants with glomerular CKD who were obese, BMIz change was not significantly associated with annualized eGFR change.ConclusionObesity may represent a target of intervention to improve kidney function in children with non-glomerular CKD.Graphical abstractA higher resolution version of the Graphical abstract is available as Supplementary information
    18 schema:genre article
    19 schema:isAccessibleForFree false
    20 schema:isPartOf sg:journal.1097267
    21 schema:keywords Abstract
    22 BMI categories
    23 BMI change
    24 BMI z-score change
    25 BMIZ change
    26 BMIz
    27 BackgroundObesity
    28 CKD progression
    29 ConclusionObesity
    30 EGFR
    31 Graphical Abstract
    32 Graphical abstractA higher resolution version
    33 Information Association
    34 Kaplan-Meier survival curves
    35 MethodsWe
    36 ResultsParticipants
    37 age
    38 association
    39 baseline BMI category
    40 body mass index
    41 body mass index categories
    42 cardiovascular disease
    43 categories
    44 changes
    45 children
    46 chronic kidney disease
    47 concurrent changes
    48 concurrent decrease
    49 curves
    50 decrease
    51 disease
    52 eGFR change
    53 effect
    54 equations
    55 failure time model
    56 filtration rate
    57 function
    58 glomerular chronic kidney disease
    59 glomerular filtration rate
    60 high-resolution version
    61 improvement
    62 index
    63 index categories
    64 intervention
    65 kidney disease
    66 kidney function
    67 kidney replacement therapy
    68 life
    69 linear regression
    70 m2
    71 mass index
    72 median
    73 median age
    74 median eGFR
    75 model
    76 obese
    77 parametric failure time models
    78 participants
    79 percentage change
    80 progression
    81 quality
    82 quantification
    83 rate
    84 reduced quality
    85 regression
    86 relationship
    87 replacement therapy
    88 resolution version
    89 significant improvement
    90 survival curves
    91 target
    92 target of intervention
    93 therapy
    94 time
    95 time model
    96 version
    97 years
    98 z-score change
    99 schema:name Associations of body mass index (BMI) and BMI change with progression of chronic kidney disease in children
    100 schema:pagination 1-10
    101 schema:productId Nd82e0c9e04664d8e826a11bb0e67c415
    102 Nec04319f4ac346cd802cc14253976e0a
    103 Nf88cb5622890443fbacc1e9ea7bfcece
    104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1150508787
    105 https://doi.org/10.1007/s00467-022-05655-6
    106 schema:sdDatePublished 2022-12-01T06:44
    107 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    108 schema:sdPublisher N4b3e4bf3f3544f34b912f41c536c2b84
    109 schema:url https://doi.org/10.1007/s00467-022-05655-6
    110 sgo:license sg:explorer/license/
    111 sgo:sdDataset articles
    112 rdf:type schema:ScholarlyArticle
    113 N3c870b92acaf43089b7fcb58e90d4ad0 rdf:first sg:person.01001100731.80
    114 rdf:rest N8fbe64a2bedb4feeb63a2ee436b0f88d
    115 N46e9578875cc4b739b3989c6dc08b5c4 rdf:first sg:person.0744766701.72
    116 rdf:rest N97dbc7b6ebfe49c1adbf6ef2c0188e06
    117 N4b3e4bf3f3544f34b912f41c536c2b84 schema:name Springer Nature - SN SciGraph project
    118 rdf:type schema:Organization
    119 N69acd339dc5e4fffbdb913da4597d188 rdf:first sg:person.01355177015.23
    120 rdf:rest N7dcfde46ea044ea0b6f973201304638f
    121 N76f91bbb7fe443ef9d76c96e8f502e1b rdf:first sg:person.0773506111.36
    122 rdf:rest N69acd339dc5e4fffbdb913da4597d188
    123 N7dcfde46ea044ea0b6f973201304638f rdf:first sg:person.01033606022.47
    124 rdf:rest N97a318853e6145e6941763421786eccf
    125 N8fbe64a2bedb4feeb63a2ee436b0f88d rdf:first sg:person.01170504126.10
    126 rdf:rest N76f91bbb7fe443ef9d76c96e8f502e1b
    127 N97a318853e6145e6941763421786eccf rdf:first sg:person.0767307565.06
    128 rdf:rest rdf:nil
    129 N97dbc7b6ebfe49c1adbf6ef2c0188e06 rdf:first sg:person.016157504320.32
    130 rdf:rest N3c870b92acaf43089b7fcb58e90d4ad0
    131 Nd82e0c9e04664d8e826a11bb0e67c415 schema:name pubmed_id
    132 schema:value 36018433
    133 rdf:type schema:PropertyValue
    134 Nec04319f4ac346cd802cc14253976e0a schema:name doi
    135 schema:value 10.1007/s00467-022-05655-6
    136 rdf:type schema:PropertyValue
    137 Nf88cb5622890443fbacc1e9ea7bfcece schema:name dimensions_id
    138 schema:value pub.1150508787
    139 rdf:type schema:PropertyValue
    140 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    141 schema:name Medical and Health Sciences
    142 rdf:type schema:DefinedTerm
    143 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
    144 schema:name Clinical Sciences
    145 rdf:type schema:DefinedTerm
    146 sg:grant.2690130 http://pending.schema.org/fundedItem sg:pub.10.1007/s00467-022-05655-6
    147 rdf:type schema:MonetaryGrant
    148 sg:grant.2690131 http://pending.schema.org/fundedItem sg:pub.10.1007/s00467-022-05655-6
    149 rdf:type schema:MonetaryGrant
    150 sg:grant.7726542 http://pending.schema.org/fundedItem sg:pub.10.1007/s00467-022-05655-6
    151 rdf:type schema:MonetaryGrant
    152 sg:grant.7753178 http://pending.schema.org/fundedItem sg:pub.10.1007/s00467-022-05655-6
    153 rdf:type schema:MonetaryGrant
    154 sg:journal.1097267 schema:issn 0931-041X
    155 1432-198X
    156 schema:name Pediatric Nephrology
    157 schema:publisher Springer Nature
    158 rdf:type schema:Periodical
    159 sg:person.01001100731.80 schema:affiliation grid-institutes:grid.21107.35
    160 schema:familyName Schneider
    161 schema:givenName Michael F.
    162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01001100731.80
    163 rdf:type schema:Person
    164 sg:person.01033606022.47 schema:affiliation grid-institutes:grid.239552.a
    165 schema:familyName Furth
    166 schema:givenName Susan L.
    167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01033606022.47
    168 rdf:type schema:Person
    169 sg:person.01170504126.10 schema:affiliation grid-institutes:grid.239573.9
    170 schema:familyName Mitsnefes
    171 schema:givenName Mark M.
    172 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01170504126.10
    173 rdf:type schema:Person
    174 sg:person.01355177015.23 schema:affiliation grid-institutes:grid.239559.1
    175 schema:familyName Warady
    176 schema:givenName Bradley A.
    177 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01355177015.23
    178 rdf:type schema:Person
    179 sg:person.016157504320.32 schema:affiliation grid-institutes:grid.21107.35
    180 schema:familyName Roem
    181 schema:givenName Jennifer
    182 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016157504320.32
    183 rdf:type schema:Person
    184 sg:person.0744766701.72 schema:affiliation grid-institutes:grid.239552.a
    185 schema:familyName Kogon
    186 schema:givenName Amy J.
    187 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0744766701.72
    188 rdf:type schema:Person
    189 sg:person.0767307565.06 schema:affiliation grid-institutes:grid.2515.3
    190 schema:familyName Rodig
    191 schema:givenName Nancy M.
    192 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0767307565.06
    193 rdf:type schema:Person
    194 sg:person.0773506111.36 schema:affiliation grid-institutes:grid.239552.a
    195 schema:familyName Zemel
    196 schema:givenName Babette S.
    197 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0773506111.36
    198 rdf:type schema:Person
    199 sg:pub.10.1007/s00467-015-3287-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1016472191
    200 https://doi.org/10.1007/s00467-015-3287-z
    201 rdf:type schema:CreativeWork
    202 sg:pub.10.1007/s00467-017-3636-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084022266
    203 https://doi.org/10.1007/s00467-017-3636-1
    204 rdf:type schema:CreativeWork
    205 sg:pub.10.1007/s00467-017-3860-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100115973
    206 https://doi.org/10.1007/s00467-017-3860-8
    207 rdf:type schema:CreativeWork
    208 sg:pub.10.1007/s00467-018-3942-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101746538
    209 https://doi.org/10.1007/s00467-018-3942-2
    210 rdf:type schema:CreativeWork
    211 sg:pub.10.1007/s00467-018-4038-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106286933
    212 https://doi.org/10.1007/s00467-018-4038-8
    213 rdf:type schema:CreativeWork
    214 sg:pub.10.1007/s00467-019-04265-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1113875380
    215 https://doi.org/10.1007/s00467-019-04265-z
    216 rdf:type schema:CreativeWork
    217 sg:pub.10.1007/s00467-020-04907-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1134758482
    218 https://doi.org/10.1007/s00467-020-04907-7
    219 rdf:type schema:CreativeWork
    220 sg:pub.10.1007/s11255-007-9258-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1018411514
    221 https://doi.org/10.1007/s11255-007-9258-y
    222 rdf:type schema:CreativeWork
    223 sg:pub.10.1186/s12882-015-0083-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031743229
    224 https://doi.org/10.1186/s12882-015-0083-8
    225 rdf:type schema:CreativeWork
    226 sg:pub.10.1186/s12882-019-1434-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1117701927
    227 https://doi.org/10.1186/s12882-019-1434-7
    228 rdf:type schema:CreativeWork
    229 sg:pub.10.1186/s12882-019-1586-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1122170051
    230 https://doi.org/10.1186/s12882-019-1586-5
    231 rdf:type schema:CreativeWork
    232 grid-institutes:grid.21107.35 schema:alternateName Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
    233 schema:name Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
    234 rdf:type schema:Organization
    235 grid-institutes:grid.239552.a schema:alternateName Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Children’s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
    236 Pediatrics, Division of Nephrology, Children’s Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania Philadelphia, Philadelphia, PA, USA
    237 schema:name Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Children’s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
    238 Pediatrics, Division of Nephrology, Children’s Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania Philadelphia, Philadelphia, PA, USA
    239 rdf:type schema:Organization
    240 grid-institutes:grid.239559.1 schema:alternateName Pediatrics, Division of Nephrology, Children’s Mercy Kansas City, Kansas City, MO, USA
    241 schema:name Pediatrics, Division of Nephrology, Children’s Mercy Kansas City, Kansas City, MO, USA
    242 rdf:type schema:Organization
    243 grid-institutes:grid.239573.9 schema:alternateName Pediatrics, Division of Nephrology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
    244 schema:name Pediatrics, Division of Nephrology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
    245 rdf:type schema:Organization
    246 grid-institutes:grid.2515.3 schema:alternateName Pediatrics, Division of Nephrology, Boston Children’s Hospital, Boston, MA, USA
    247 schema:name Pediatrics, Division of Nephrology, Boston Children’s Hospital, Boston, MA, USA
    248 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...