A cross-sectional study on uric acid levels among Chinese adolescents View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12-06

AUTHORS

Jie Lu, Wenyan Sun, Lingling Cui, Xinde Li, Yuwei He, Zhen Liu, Hailong Li, Lin Han, Aichang Ji, Can Wang, Hui Zhang, Xiaopeng Ji, Wei Ren, Xuefeng Wang, Changgui Li

ABSTRACT

BackgroundThe prevalence of hyperuricemia is increasing in adults, while the prevalence among adolescents is seldom reported.MethodsA cross-sectional survey by multistage, stratified sampling method was carried out in Shandong Province during 2017–2018. A total of 9371 adolescents aged from 13 to 19 years were randomly sampled and analyzed in this survey.ResultsThe overall mean serum uric acid (sUA) concentration was 6.08 ± 1.57 mg/dL and overall hyperuricemia prevalence was 25.4% and 60.5% (when hyperuricemia was defined as sUA ≥ 7 mg/dL or ≥ 5.5 mg/dL). Prevalence were 42.3% (male) and 8.0% (female) when limit was 7 mg/dL and prevalence were 82.1% (male) and 38.4% (female) when limit was 5.5 mg/dL. Male gender, increased body mass index, increased waist circumstance, increased triglycerides, increased fasting blood glucose, increased systolic blood pressure, decreased estimated glomerular filtration rate, and positive family gout history were associated with the enhanced risk of hyperuricemia according to univariate and/or multivariate logistic regression analysis. Food intake frequency of carbonate beverage, mutton, and other kinds varied between hyperuricemia adolescents and normal sUA ones.ConclusionsThe studied adolescent population showed sUA level and hyperuricemia prevalence which are even higher than those of adults in China. The epidemic of youth hyperuricemia may pose a future threat of gout attacks and other hyperuricemia-related diseases, which alarms the public, health professionals and health policy makers to prepare the future health challenges. More... »

PAGES

441-446

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00467-019-04357-w

DOI

http://dx.doi.org/10.1007/s00467-019-04357-w

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1123193038

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/31811538


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Public Health and Health Services", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adolescent", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "China", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cross-Sectional Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hyperuricemia", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prevalence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reference Values", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Risk Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sex Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Uric Acid", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Young Adult", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Metabolic Diseases, Qingdao University, 266003, Qingdao, China", 
          "id": "http://www.grid.ac/institutes/grid.410645.2", 
          "name": [
            "Shandong Provincial Key Laboratory of Metabolic Diseases and Qingdao Key Laboratory of Gout, the Affiliated Hospital of Qingdao University, Qingdao, China", 
            "Department of Endocrinology and Metabolism, the Affiliated Hospital of Qingdao University, Qingdao, China", 
            "Institute of Metabolic Diseases, Qingdao University, 266003, Qingdao, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lu", 
        "givenName": "Jie", 
        "id": "sg:person.0711362475.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0711362475.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Metabolic Diseases, Qingdao University, 266003, Qingdao, China", 
          "id": "http://www.grid.ac/institutes/grid.410645.2", 
          "name": [
            "Shandong Provincial Key Laboratory of Metabolic Diseases and Qingdao Key Laboratory of Gout, the Affiliated Hospital of Qingdao University, Qingdao, China", 
            "Department of Endocrinology and Metabolism, the Affiliated Hospital of Qingdao University, Qingdao, China", 
            "Institute of Metabolic Diseases, Qingdao University, 266003, Qingdao, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sun", 
        "givenName": "Wenyan", 
        "id": "sg:person.013310476631.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013310476631.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Metabolic Diseases, Qingdao University, 266003, Qingdao, China", 
          "id": "http://www.grid.ac/institutes/grid.410645.2", 
          "name": [
            "Shandong Provincial Key Laboratory of Metabolic Diseases and Qingdao Key Laboratory of Gout, the Affiliated Hospital of Qingdao University, Qingdao, China", 
            "Department of Endocrinology and Metabolism, the Affiliated Hospital of Qingdao University, Qingdao, China", 
            "Institute of Metabolic Diseases, Qingdao University, 266003, Qingdao, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cui", 
        "givenName": "Lingling", 
        "id": "sg:person.0631751461.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0631751461.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Metabolic Diseases, Qingdao University, 266003, Qingdao, China", 
          "id": "http://www.grid.ac/institutes/grid.410645.2", 
          "name": [
            "Shandong Provincial Key Laboratory of Metabolic Diseases and Qingdao Key Laboratory of Gout, the Affiliated Hospital of Qingdao University, Qingdao, China", 
            "Department of Endocrinology and Metabolism, the Affiliated Hospital of Qingdao University, Qingdao, China", 
            "Institute of Metabolic Diseases, Qingdao University, 266003, Qingdao, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Xinde", 
        "id": "sg:person.0753030711.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0753030711.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Metabolic Diseases, Qingdao University, 266003, Qingdao, China", 
          "id": "http://www.grid.ac/institutes/grid.410645.2", 
          "name": [
            "Shandong Provincial Key Laboratory of Metabolic Diseases and Qingdao Key Laboratory of Gout, the Affiliated Hospital of Qingdao University, Qingdao, China", 
            "Department of Endocrinology and Metabolism, the Affiliated Hospital of Qingdao University, Qingdao, China", 
            "Institute of Metabolic Diseases, Qingdao University, 266003, Qingdao, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "He", 
        "givenName": "Yuwei", 
        "id": "sg:person.011763651031.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011763651031.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Metabolic Diseases, Qingdao University, 266003, Qingdao, China", 
          "id": "http://www.grid.ac/institutes/grid.410645.2", 
          "name": [
            "Shandong Provincial Key Laboratory of Metabolic Diseases and Qingdao Key Laboratory of Gout, the Affiliated Hospital of Qingdao University, Qingdao, China", 
            "Department of Endocrinology and Metabolism, the Affiliated Hospital of Qingdao University, Qingdao, China", 
            "Institute of Metabolic Diseases, Qingdao University, 266003, Qingdao, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Zhen", 
        "id": "sg:person.0636602311.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0636602311.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Metabolic Diseases, Qingdao University, 266003, Qingdao, China", 
          "id": "http://www.grid.ac/institutes/grid.410645.2", 
          "name": [
            "Shandong Provincial Key Laboratory of Metabolic Diseases and Qingdao Key Laboratory of Gout, the Affiliated Hospital of Qingdao University, Qingdao, China", 
            "Department of Endocrinology and Metabolism, the Affiliated Hospital of Qingdao University, Qingdao, China", 
            "Institute of Metabolic Diseases, Qingdao University, 266003, Qingdao, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Hailong", 
        "id": "sg:person.010515525423.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010515525423.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Metabolic Diseases, Qingdao University, 266003, Qingdao, China", 
          "id": "http://www.grid.ac/institutes/grid.410645.2", 
          "name": [
            "Shandong Provincial Key Laboratory of Metabolic Diseases and Qingdao Key Laboratory of Gout, the Affiliated Hospital of Qingdao University, Qingdao, China", 
            "Department of Endocrinology and Metabolism, the Affiliated Hospital of Qingdao University, Qingdao, China", 
            "Institute of Metabolic Diseases, Qingdao University, 266003, Qingdao, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Han", 
        "givenName": "Lin", 
        "id": "sg:person.01207366167.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01207366167.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Metabolic Diseases, Qingdao University, 266003, Qingdao, China", 
          "id": "http://www.grid.ac/institutes/grid.410645.2", 
          "name": [
            "Shandong Provincial Key Laboratory of Metabolic Diseases and Qingdao Key Laboratory of Gout, the Affiliated Hospital of Qingdao University, Qingdao, China", 
            "Department of Endocrinology and Metabolism, the Affiliated Hospital of Qingdao University, Qingdao, China", 
            "Institute of Metabolic Diseases, Qingdao University, 266003, Qingdao, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ji", 
        "givenName": "Aichang", 
        "id": "sg:person.015177141137.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015177141137.92"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Metabolic Diseases, Qingdao University, 266003, Qingdao, China", 
          "id": "http://www.grid.ac/institutes/grid.410645.2", 
          "name": [
            "Shandong Provincial Key Laboratory of Metabolic Diseases and Qingdao Key Laboratory of Gout, the Affiliated Hospital of Qingdao University, Qingdao, China", 
            "Department of Endocrinology and Metabolism, the Affiliated Hospital of Qingdao University, Qingdao, China", 
            "Institute of Metabolic Diseases, Qingdao University, 266003, Qingdao, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Can", 
        "id": "sg:person.01067550727.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01067550727.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Metabolic Diseases, Qingdao University, 266003, Qingdao, China", 
          "id": "http://www.grid.ac/institutes/grid.410645.2", 
          "name": [
            "Shandong Provincial Key Laboratory of Metabolic Diseases and Qingdao Key Laboratory of Gout, the Affiliated Hospital of Qingdao University, Qingdao, China", 
            "Department of Endocrinology and Metabolism, the Affiliated Hospital of Qingdao University, Qingdao, China", 
            "Institute of Metabolic Diseases, Qingdao University, 266003, Qingdao, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Hui", 
        "id": "sg:person.016276400631.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016276400631.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Metabolic Diseases, Qingdao University, 266003, Qingdao, China", 
          "id": "http://www.grid.ac/institutes/grid.410645.2", 
          "name": [
            "Shandong Provincial Key Laboratory of Metabolic Diseases and Qingdao Key Laboratory of Gout, the Affiliated Hospital of Qingdao University, Qingdao, China", 
            "Department of Endocrinology and Metabolism, the Affiliated Hospital of Qingdao University, Qingdao, China", 
            "Institute of Metabolic Diseases, Qingdao University, 266003, Qingdao, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ji", 
        "givenName": "Xiaopeng", 
        "id": "sg:person.012011170260.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012011170260.67"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Metabolic Diseases, Qingdao University, 266003, Qingdao, China", 
          "id": "http://www.grid.ac/institutes/grid.410645.2", 
          "name": [
            "Shandong Provincial Key Laboratory of Metabolic Diseases and Qingdao Key Laboratory of Gout, the Affiliated Hospital of Qingdao University, Qingdao, China", 
            "Department of Endocrinology and Metabolism, the Affiliated Hospital of Qingdao University, Qingdao, China", 
            "Institute of Metabolic Diseases, Qingdao University, 266003, Qingdao, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ren", 
        "givenName": "Wei", 
        "id": "sg:person.01021144111.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01021144111.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Metabolic Diseases, Qingdao University, 266003, Qingdao, China", 
          "id": "http://www.grid.ac/institutes/grid.410645.2", 
          "name": [
            "Shandong Provincial Key Laboratory of Metabolic Diseases and Qingdao Key Laboratory of Gout, the Affiliated Hospital of Qingdao University, Qingdao, China", 
            "Department of Endocrinology and Metabolism, the Affiliated Hospital of Qingdao University, Qingdao, China", 
            "Institute of Metabolic Diseases, Qingdao University, 266003, Qingdao, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Xuefeng", 
        "id": "sg:person.01067257311.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01067257311.84"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Metabolic Diseases, Qingdao University, 266003, Qingdao, China", 
          "id": "http://www.grid.ac/institutes/grid.410645.2", 
          "name": [
            "Shandong Provincial Key Laboratory of Metabolic Diseases and Qingdao Key Laboratory of Gout, the Affiliated Hospital of Qingdao University, Qingdao, China", 
            "Department of Endocrinology and Metabolism, the Affiliated Hospital of Qingdao University, Qingdao, China", 
            "Institute of Metabolic Diseases, Qingdao University, 266003, Qingdao, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Changgui", 
        "id": "sg:person.0676564741.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0676564741.16"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/jhh.2012.36", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016396736", 
          "https://doi.org/10.1038/jhh.2012.36"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12-06", 
    "datePublishedReg": "2019-12-06", 
    "description": "BackgroundThe prevalence of hyperuricemia is increasing in adults, while the prevalence among adolescents is seldom reported.MethodsA cross-sectional survey by multistage, stratified sampling method was carried out in Shandong Province during 2017\u20132018. A total of 9371 adolescents aged from 13 to 19 years were randomly sampled and analyzed in this survey.ResultsThe overall mean serum uric acid (sUA) concentration was 6.08 \u00b1 1.57 mg/dL and overall hyperuricemia prevalence was 25.4% and 60.5% (when hyperuricemia was defined as sUA \u2265 7 mg/dL or \u2265 5.5 mg/dL). Prevalence were 42.3% (male) and 8.0% (female) when limit was 7 mg/dL and prevalence were 82.1% (male) and 38.4% (female) when limit was 5.5 mg/dL. Male gender, increased body mass index, increased waist circumstance, increased triglycerides, increased fasting blood glucose, increased systolic blood pressure, decreased estimated glomerular filtration rate, and positive family gout history were associated with the enhanced risk of hyperuricemia according to univariate and/or multivariate logistic regression analysis. Food intake frequency of carbonate beverage, mutton, and other kinds varied between hyperuricemia adolescents and normal sUA ones.ConclusionsThe studied adolescent population showed sUA level and hyperuricemia prevalence which are even higher than those of adults in China. The epidemic of youth hyperuricemia may pose a future threat of gout attacks and other hyperuricemia-related diseases, which alarms the public, health professionals and health policy makers to prepare the future health challenges.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00467-019-04357-w", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.8347503", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.8368779", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1097267", 
        "issn": [
          "0931-041X", 
          "1432-198X"
        ], 
        "name": "Pediatric Nephrology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "35"
      }
    ], 
    "keywords": [
      "hyperuricemia prevalence", 
      "serum uric acid concentration", 
      "MethodsA cross-sectional survey", 
      "prevalence of hyperuricemia", 
      "systolic blood pressure", 
      "glomerular filtration rate", 
      "body mass index", 
      "uric acid levels", 
      "cross-sectional study", 
      "logistic regression analysis", 
      "cross-sectional survey", 
      "health policy makers", 
      "uric acid concentration", 
      "gout history", 
      "hyperuricemia-related diseases", 
      "blood pressure", 
      "mass index", 
      "gout attacks", 
      "waist circumstance", 
      "male gender", 
      "blood glucose", 
      "filtration rate", 
      "future health challenges", 
      "enhanced risk", 
      "health professionals", 
      "adolescent population", 
      "health challenges", 
      "prevalence", 
      "hyperuricemia", 
      "acid levels", 
      "regression analysis", 
      "adolescents", 
      "adults", 
      "stratified sampling method", 
      "triglycerides", 
      "acid concentration", 
      "dl", 
      "disease", 
      "Chinese adolescents", 
      "epidemic", 
      "levels", 
      "total", 
      "risk", 
      "glucose", 
      "gender", 
      "sampling method", 
      "survey", 
      "beverages", 
      "professionals", 
      "ConclusionsThe", 
      "population", 
      "years", 
      "index", 
      "food", 
      "history", 
      "study", 
      "multistage", 
      "Shandong Province", 
      "rate", 
      "policy makers", 
      "pressure", 
      "concentration", 
      "frequency", 
      "mutton", 
      "analysis", 
      "circumstances", 
      "challenges", 
      "Province", 
      "attacks", 
      "future threats", 
      "method", 
      "public", 
      "threat", 
      "China", 
      "makers", 
      "limit", 
      "one", 
      "kind"
    ], 
    "name": "A cross-sectional study on uric acid levels among Chinese adolescents", 
    "pagination": "441-446", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1123193038"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00467-019-04357-w"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "31811538"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00467-019-04357-w", 
      "https://app.dimensions.ai/details/publication/pub.1123193038"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-11-24T21:05", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_817.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00467-019-04357-w"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00467-019-04357-w'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00467-019-04357-w'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00467-019-04357-w'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00467-019-04357-w'


 

This table displays all metadata directly associated to this object as RDF triples.

299 TRIPLES      21 PREDICATES      117 URIs      108 LITERALS      20 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00467-019-04357-w schema:about N327bc292533141b6ac4a14523fc5dba9
2 N3b36f337d1d2493080557e9f95950df5
3 N5b9081ecf0944b25a3090924e4792342
4 N6a038eb5ef624bccbf81daf62579d76a
5 N6ada25c57c5f497d9075e34e2303b0d2
6 N7585f0b76cff4548b3eb5645b6f4a44a
7 N7b73ca49e700464c8d24efb6c6a968f2
8 N92c849e05c7b48978b471407b3163e48
9 N9eb3381fe8ba41c4b93ebda53785eebd
10 Nbf19bfd14d9a4445a96ebe6884305297
11 Nc72e630afb15455a8413c78aa42819a0
12 Neb2a285b121941d79d27c050b9509abb
13 Nfb077c05619a4c04b3662fe51f3f067f
14 anzsrc-for:11
15 anzsrc-for:1117
16 schema:author N0fb567ec63ff43f7a91cb3871467951c
17 schema:citation sg:pub.10.1038/jhh.2012.36
18 schema:datePublished 2019-12-06
19 schema:datePublishedReg 2019-12-06
20 schema:description BackgroundThe prevalence of hyperuricemia is increasing in adults, while the prevalence among adolescents is seldom reported.MethodsA cross-sectional survey by multistage, stratified sampling method was carried out in Shandong Province during 2017–2018. A total of 9371 adolescents aged from 13 to 19 years were randomly sampled and analyzed in this survey.ResultsThe overall mean serum uric acid (sUA) concentration was 6.08 ± 1.57 mg/dL and overall hyperuricemia prevalence was 25.4% and 60.5% (when hyperuricemia was defined as sUA ≥ 7 mg/dL or ≥ 5.5 mg/dL). Prevalence were 42.3% (male) and 8.0% (female) when limit was 7 mg/dL and prevalence were 82.1% (male) and 38.4% (female) when limit was 5.5 mg/dL. Male gender, increased body mass index, increased waist circumstance, increased triglycerides, increased fasting blood glucose, increased systolic blood pressure, decreased estimated glomerular filtration rate, and positive family gout history were associated with the enhanced risk of hyperuricemia according to univariate and/or multivariate logistic regression analysis. Food intake frequency of carbonate beverage, mutton, and other kinds varied between hyperuricemia adolescents and normal sUA ones.ConclusionsThe studied adolescent population showed sUA level and hyperuricemia prevalence which are even higher than those of adults in China. The epidemic of youth hyperuricemia may pose a future threat of gout attacks and other hyperuricemia-related diseases, which alarms the public, health professionals and health policy makers to prepare the future health challenges.
21 schema:genre article
22 schema:isAccessibleForFree true
23 schema:isPartOf Nc002d78c940b4d4f9aa0f1e5cc3e50f8
24 Ndab86f64e4d34a1e9e68580c9093ecef
25 sg:journal.1097267
26 schema:keywords China
27 Chinese adolescents
28 ConclusionsThe
29 MethodsA cross-sectional survey
30 Province
31 Shandong Province
32 acid concentration
33 acid levels
34 adolescent population
35 adolescents
36 adults
37 analysis
38 attacks
39 beverages
40 blood glucose
41 blood pressure
42 body mass index
43 challenges
44 circumstances
45 concentration
46 cross-sectional study
47 cross-sectional survey
48 disease
49 dl
50 enhanced risk
51 epidemic
52 filtration rate
53 food
54 frequency
55 future health challenges
56 future threats
57 gender
58 glomerular filtration rate
59 glucose
60 gout attacks
61 gout history
62 health challenges
63 health policy makers
64 health professionals
65 history
66 hyperuricemia
67 hyperuricemia prevalence
68 hyperuricemia-related diseases
69 index
70 kind
71 levels
72 limit
73 logistic regression analysis
74 makers
75 male gender
76 mass index
77 method
78 multistage
79 mutton
80 one
81 policy makers
82 population
83 pressure
84 prevalence
85 prevalence of hyperuricemia
86 professionals
87 public
88 rate
89 regression analysis
90 risk
91 sampling method
92 serum uric acid concentration
93 stratified sampling method
94 study
95 survey
96 systolic blood pressure
97 threat
98 total
99 triglycerides
100 uric acid concentration
101 uric acid levels
102 waist circumstance
103 years
104 schema:name A cross-sectional study on uric acid levels among Chinese adolescents
105 schema:pagination 441-446
106 schema:productId N37254cf3b0c6450b90168025e9ea6e60
107 N98849faaf2ee4b478f6e8e5bf1a960a2
108 Nb70cb84ef9c942adad624bc698daf854
109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1123193038
110 https://doi.org/10.1007/s00467-019-04357-w
111 schema:sdDatePublished 2022-11-24T21:05
112 schema:sdLicense https://scigraph.springernature.com/explorer/license/
113 schema:sdPublisher N80213ded5eca41c3a90656c21487340d
114 schema:url https://doi.org/10.1007/s00467-019-04357-w
115 sgo:license sg:explorer/license/
116 sgo:sdDataset articles
117 rdf:type schema:ScholarlyArticle
118 N0322ca844c4f4e1590a7e8aa0791d204 rdf:first sg:person.0676564741.16
119 rdf:rest rdf:nil
120 N03a06530a7b84b7e919b82c764950ad5 rdf:first sg:person.012011170260.67
121 rdf:rest Nb4afceedbbf94ac280316109737336cb
122 N0fb567ec63ff43f7a91cb3871467951c rdf:first sg:person.0711362475.59
123 rdf:rest N7b76588e7cf049b5b587ddc93a68fa9d
124 N2f915acee7c1434c8de32db3d4bd3dc1 rdf:first sg:person.010515525423.90
125 rdf:rest Nefd5a1cb729646839efce64e9a1afb7b
126 N327bc292533141b6ac4a14523fc5dba9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name Cross-Sectional Studies
128 rdf:type schema:DefinedTerm
129 N35729aa7b94d4c0dbb706efb2d03628b rdf:first sg:person.016276400631.46
130 rdf:rest N03a06530a7b84b7e919b82c764950ad5
131 N37254cf3b0c6450b90168025e9ea6e60 schema:name doi
132 schema:value 10.1007/s00467-019-04357-w
133 rdf:type schema:PropertyValue
134 N376a018201d0400eaf1f8038ef57043c rdf:first sg:person.0631751461.04
135 rdf:rest Ncb99413667944072a0fb63ef3f45a453
136 N3b36f337d1d2493080557e9f95950df5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
137 schema:name Hyperuricemia
138 rdf:type schema:DefinedTerm
139 N5b9081ecf0944b25a3090924e4792342 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
140 schema:name Young Adult
141 rdf:type schema:DefinedTerm
142 N6a038eb5ef624bccbf81daf62579d76a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
143 schema:name Male
144 rdf:type schema:DefinedTerm
145 N6ada25c57c5f497d9075e34e2303b0d2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
146 schema:name Prevalence
147 rdf:type schema:DefinedTerm
148 N7585f0b76cff4548b3eb5645b6f4a44a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
149 schema:name Sex Factors
150 rdf:type schema:DefinedTerm
151 N7b73ca49e700464c8d24efb6c6a968f2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
152 schema:name Uric Acid
153 rdf:type schema:DefinedTerm
154 N7b76588e7cf049b5b587ddc93a68fa9d rdf:first sg:person.013310476631.38
155 rdf:rest N376a018201d0400eaf1f8038ef57043c
156 N7c21230cf4e94e8fa9a73cd0b38cb956 rdf:first sg:person.015177141137.92
157 rdf:rest N8721d6ecdb434e729c9494057390cec7
158 N80213ded5eca41c3a90656c21487340d schema:name Springer Nature - SN SciGraph project
159 rdf:type schema:Organization
160 N8721d6ecdb434e729c9494057390cec7 rdf:first sg:person.01067550727.80
161 rdf:rest N35729aa7b94d4c0dbb706efb2d03628b
162 N8a4e4203098244e4b5b472679a35b0d1 rdf:first sg:person.0636602311.22
163 rdf:rest N2f915acee7c1434c8de32db3d4bd3dc1
164 N92c849e05c7b48978b471407b3163e48 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
165 schema:name Adolescent
166 rdf:type schema:DefinedTerm
167 N98849faaf2ee4b478f6e8e5bf1a960a2 schema:name dimensions_id
168 schema:value pub.1123193038
169 rdf:type schema:PropertyValue
170 N9eb3381fe8ba41c4b93ebda53785eebd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
171 schema:name Risk Factors
172 rdf:type schema:DefinedTerm
173 Nb4afceedbbf94ac280316109737336cb rdf:first sg:person.01021144111.80
174 rdf:rest Nc5b36e9b192e4a4f8ae5aa0e28cf6ee8
175 Nb70cb84ef9c942adad624bc698daf854 schema:name pubmed_id
176 schema:value 31811538
177 rdf:type schema:PropertyValue
178 Nbf19bfd14d9a4445a96ebe6884305297 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
179 schema:name China
180 rdf:type schema:DefinedTerm
181 Nc002d78c940b4d4f9aa0f1e5cc3e50f8 schema:issueNumber 3
182 rdf:type schema:PublicationIssue
183 Nc5b36e9b192e4a4f8ae5aa0e28cf6ee8 rdf:first sg:person.01067257311.84
184 rdf:rest N0322ca844c4f4e1590a7e8aa0791d204
185 Nc72e630afb15455a8413c78aa42819a0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
186 schema:name Female
187 rdf:type schema:DefinedTerm
188 Ncb99413667944072a0fb63ef3f45a453 rdf:first sg:person.0753030711.27
189 rdf:rest Nf0fc7a6ad29749c29cc73eff88f0b462
190 Ndab86f64e4d34a1e9e68580c9093ecef schema:volumeNumber 35
191 rdf:type schema:PublicationVolume
192 Neb2a285b121941d79d27c050b9509abb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
193 schema:name Humans
194 rdf:type schema:DefinedTerm
195 Nefd5a1cb729646839efce64e9a1afb7b rdf:first sg:person.01207366167.36
196 rdf:rest N7c21230cf4e94e8fa9a73cd0b38cb956
197 Nf0fc7a6ad29749c29cc73eff88f0b462 rdf:first sg:person.011763651031.40
198 rdf:rest N8a4e4203098244e4b5b472679a35b0d1
199 Nfb077c05619a4c04b3662fe51f3f067f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
200 schema:name Reference Values
201 rdf:type schema:DefinedTerm
202 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
203 schema:name Medical and Health Sciences
204 rdf:type schema:DefinedTerm
205 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
206 schema:name Public Health and Health Services
207 rdf:type schema:DefinedTerm
208 sg:grant.8347503 http://pending.schema.org/fundedItem sg:pub.10.1007/s00467-019-04357-w
209 rdf:type schema:MonetaryGrant
210 sg:grant.8368779 http://pending.schema.org/fundedItem sg:pub.10.1007/s00467-019-04357-w
211 rdf:type schema:MonetaryGrant
212 sg:journal.1097267 schema:issn 0931-041X
213 1432-198X
214 schema:name Pediatric Nephrology
215 schema:publisher Springer Nature
216 rdf:type schema:Periodical
217 sg:person.01021144111.80 schema:affiliation grid-institutes:grid.410645.2
218 schema:familyName Ren
219 schema:givenName Wei
220 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01021144111.80
221 rdf:type schema:Person
222 sg:person.010515525423.90 schema:affiliation grid-institutes:grid.410645.2
223 schema:familyName Li
224 schema:givenName Hailong
225 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010515525423.90
226 rdf:type schema:Person
227 sg:person.01067257311.84 schema:affiliation grid-institutes:grid.410645.2
228 schema:familyName Wang
229 schema:givenName Xuefeng
230 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01067257311.84
231 rdf:type schema:Person
232 sg:person.01067550727.80 schema:affiliation grid-institutes:grid.410645.2
233 schema:familyName Wang
234 schema:givenName Can
235 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01067550727.80
236 rdf:type schema:Person
237 sg:person.011763651031.40 schema:affiliation grid-institutes:grid.410645.2
238 schema:familyName He
239 schema:givenName Yuwei
240 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011763651031.40
241 rdf:type schema:Person
242 sg:person.012011170260.67 schema:affiliation grid-institutes:grid.410645.2
243 schema:familyName Ji
244 schema:givenName Xiaopeng
245 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012011170260.67
246 rdf:type schema:Person
247 sg:person.01207366167.36 schema:affiliation grid-institutes:grid.410645.2
248 schema:familyName Han
249 schema:givenName Lin
250 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01207366167.36
251 rdf:type schema:Person
252 sg:person.013310476631.38 schema:affiliation grid-institutes:grid.410645.2
253 schema:familyName Sun
254 schema:givenName Wenyan
255 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013310476631.38
256 rdf:type schema:Person
257 sg:person.015177141137.92 schema:affiliation grid-institutes:grid.410645.2
258 schema:familyName Ji
259 schema:givenName Aichang
260 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015177141137.92
261 rdf:type schema:Person
262 sg:person.016276400631.46 schema:affiliation grid-institutes:grid.410645.2
263 schema:familyName Zhang
264 schema:givenName Hui
265 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016276400631.46
266 rdf:type schema:Person
267 sg:person.0631751461.04 schema:affiliation grid-institutes:grid.410645.2
268 schema:familyName Cui
269 schema:givenName Lingling
270 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0631751461.04
271 rdf:type schema:Person
272 sg:person.0636602311.22 schema:affiliation grid-institutes:grid.410645.2
273 schema:familyName Liu
274 schema:givenName Zhen
275 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0636602311.22
276 rdf:type schema:Person
277 sg:person.0676564741.16 schema:affiliation grid-institutes:grid.410645.2
278 schema:familyName Li
279 schema:givenName Changgui
280 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0676564741.16
281 rdf:type schema:Person
282 sg:person.0711362475.59 schema:affiliation grid-institutes:grid.410645.2
283 schema:familyName Lu
284 schema:givenName Jie
285 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0711362475.59
286 rdf:type schema:Person
287 sg:person.0753030711.27 schema:affiliation grid-institutes:grid.410645.2
288 schema:familyName Li
289 schema:givenName Xinde
290 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0753030711.27
291 rdf:type schema:Person
292 sg:pub.10.1038/jhh.2012.36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016396736
293 https://doi.org/10.1038/jhh.2012.36
294 rdf:type schema:CreativeWork
295 grid-institutes:grid.410645.2 schema:alternateName Institute of Metabolic Diseases, Qingdao University, 266003, Qingdao, China
296 schema:name Department of Endocrinology and Metabolism, the Affiliated Hospital of Qingdao University, Qingdao, China
297 Institute of Metabolic Diseases, Qingdao University, 266003, Qingdao, China
298 Shandong Provincial Key Laboratory of Metabolic Diseases and Qingdao Key Laboratory of Gout, the Affiliated Hospital of Qingdao University, Qingdao, China
299 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...