Artificial intelligence outperforms experienced nephrologists to assess dry weight in pediatric patients on chronic hemodialysis View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-10

AUTHORS

Olivier Niel, Paul Bastard, Charlotte Boussard, Julien Hogan, Thérésa Kwon, Georges Deschênes

ABSTRACT

BACKGROUND: Dry weight is the lowest weight patients on hemodialysis can tolerate; correct dry weight estimation is necessary to minimize morbi-mortality, but is difficult to achieve. Here, we used artificial intelligence to improve the accuracy of dry weight assessment in hemodialysis patients. METHODS/RESULTS: We designed a neural network which used bio-impedancemetry, blood volume monitoring, and blood pressure values as inputs; output was artificial intelligence dry weight. Fourteen pediatric patients were switched from nephrologist to artificial intelligence dry weight. Artificial intelligence dry weight was higher (28.6%), lower (50%), or identical to nephrologist dry weight. Mean difference between artificial intelligence and nephrologist dry weights was 0.497 kg (- 1.33 to + 1.29 kg). In patients for whom artificial intelligence dry weight was lower than nephrologist dry weight, systolic blood pressure significantly decreased after dry weight decrease to artificial intelligence dry weight (77th to 60th percentile, p = 0.022); anti-hypertensive treatments were successfully decreased or discontinued in 28.7% of cases. In patients for whom artificial intelligence dry weight was higher than nephrologist dry weight, no hypertension was observed after dry weight increase to artificial intelligence dry weight; when present, symptoms of dry weight underestimation receded. CONCLUSIONS: Neural network predictions outperformed those of experienced nephrologists in most cases, proving artificial intelligence is a powerful tool for predicting dry weight in hemodialysis patients. More... »

PAGES

1799-1803

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00467-018-4015-2

DOI

http://dx.doi.org/10.1007/s00467-018-4015-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1105426491

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/29987454


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "H\u00f4pital Robert Debr\u00e9", 
          "id": "https://www.grid.ac/institutes/grid.413235.2", 
          "name": [
            "Pediatric Nephrology Department, Robert Debr\u00e9 Hospital, 48 Boulevard S\u00e9rurier, 75019, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Niel", 
        "givenName": "Olivier", 
        "id": "sg:person.01077331365.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01077331365.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "H\u00f4pital Robert Debr\u00e9", 
          "id": "https://www.grid.ac/institutes/grid.413235.2", 
          "name": [
            "Pediatric Nephrology Department, Robert Debr\u00e9 Hospital, 48 Boulevard S\u00e9rurier, 75019, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bastard", 
        "givenName": "Paul", 
        "id": "sg:person.010535600612.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010535600612.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "H\u00f4pital Robert Debr\u00e9", 
          "id": "https://www.grid.ac/institutes/grid.413235.2", 
          "name": [
            "Pediatric Nephrology Department, Robert Debr\u00e9 Hospital, 48 Boulevard S\u00e9rurier, 75019, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Boussard", 
        "givenName": "Charlotte", 
        "id": "sg:person.016452460024.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016452460024.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "H\u00f4pital Robert Debr\u00e9", 
          "id": "https://www.grid.ac/institutes/grid.413235.2", 
          "name": [
            "Pediatric Nephrology Department, Robert Debr\u00e9 Hospital, 48 Boulevard S\u00e9rurier, 75019, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hogan", 
        "givenName": "Julien", 
        "id": "sg:person.01354315031.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01354315031.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "H\u00f4pital Robert Debr\u00e9", 
          "id": "https://www.grid.ac/institutes/grid.413235.2", 
          "name": [
            "Pediatric Nephrology Department, Robert Debr\u00e9 Hospital, 48 Boulevard S\u00e9rurier, 75019, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kwon", 
        "givenName": "Th\u00e9r\u00e9sa", 
        "id": "sg:person.01147040403.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01147040403.92"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "H\u00f4pital Robert Debr\u00e9", 
          "id": "https://www.grid.ac/institutes/grid.413235.2", 
          "name": [
            "Pediatric Nephrology Department, Robert Debr\u00e9 Hospital, 48 Boulevard S\u00e9rurier, 75019, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Desch\u00eanes", 
        "givenName": "Georges", 
        "id": "sg:person.01345603567.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01345603567.82"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00467-015-3086-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006990504", 
          "https://doi.org/10.1007/s00467-015-3086-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00467-008-0831-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018417369", 
          "https://doi.org/10.1007/s00467-008-0831-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00467-008-0831-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018417369", 
          "https://doi.org/10.1007/s00467-008-0831-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1259439", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020323585"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/hdi.12138", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026163331"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2215/cjn.01440209", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027458278"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00467-016-3431-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029341987", 
          "https://doi.org/10.1007/s00467-016-3431-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00467-016-3431-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029341987", 
          "https://doi.org/10.1007/s00467-016-3431-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(09)60212-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032373946"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1542-4758.2008.00302.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047341906"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1079218134", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00467-017-3666-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085935341", 
          "https://doi.org/10.1007/s00467-017-3666-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00467-017-3666-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085935341", 
          "https://doi.org/10.1007/s00467-017-3666-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1053/j.jrn.2017.04.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085986287"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1053/j.jrn.2017.04.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085986287"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12882-017-0793-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100086778", 
          "https://doi.org/10.1186/s12882-017-0793-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejrad.2018.02.036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101296607"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/ndt/gfy067", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101490325"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-10", 
    "datePublishedReg": "2018-10-01", 
    "description": "BACKGROUND: Dry weight is the lowest weight patients on hemodialysis can tolerate; correct dry weight estimation is necessary to minimize morbi-mortality, but is difficult to achieve. Here, we used artificial intelligence to improve the accuracy of dry weight assessment in hemodialysis patients.\nMETHODS/RESULTS: We designed a neural network which used bio-impedancemetry, blood volume monitoring, and blood pressure values as inputs; output was artificial intelligence dry weight. Fourteen pediatric patients were switched from nephrologist to artificial intelligence dry weight. Artificial intelligence dry weight was higher (28.6%), lower (50%), or identical to nephrologist dry weight. Mean difference between artificial intelligence and nephrologist dry weights was 0.497\u00a0kg (-\u20091.33 to +\u20091.29\u00a0kg). In patients for whom artificial intelligence dry weight was lower than nephrologist dry weight, systolic blood pressure significantly decreased after dry weight decrease to artificial intelligence dry weight (77th to 60th percentile, p\u00a0=\u20090.022); anti-hypertensive treatments were successfully decreased or discontinued in 28.7% of cases. In patients for whom artificial intelligence dry weight was higher than nephrologist dry weight, no hypertension was observed after dry weight increase to artificial intelligence dry weight; when present, symptoms of dry weight underestimation receded.\nCONCLUSIONS: Neural network predictions outperformed those of experienced nephrologists in most cases, proving artificial intelligence is a powerful tool for predicting dry weight in hemodialysis patients.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00467-018-4015-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1097267", 
        "issn": [
          "0931-041X", 
          "1432-198X"
        ], 
        "name": "Pediatric Nephrology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "10", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "33"
      }
    ], 
    "name": "Artificial intelligence outperforms experienced nephrologists to assess dry weight in pediatric patients on chronic hemodialysis", 
    "pagination": "1799-1803", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "044eb59c8f727d0b5bfe0342b220b2b6108ecdeb085695e9a019440279066cb9"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "29987454"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "8708728"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00467-018-4015-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1105426491"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00467-018-4015-2", 
      "https://app.dimensions.ai/details/publication/pub.1105426491"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T21:00", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000604.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00467-018-4015-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00467-018-4015-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00467-018-4015-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00467-018-4015-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00467-018-4015-2'


 

This table displays all metadata directly associated to this object as RDF triples.

150 TRIPLES      21 PREDICATES      43 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00467-018-4015-2 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nc8342fe88f994036b003025e62e92699
4 schema:citation sg:pub.10.1007/s00467-008-0831-0
5 sg:pub.10.1007/s00467-015-3086-6
6 sg:pub.10.1007/s00467-016-3431-4
7 sg:pub.10.1007/s00467-017-3666-8
8 sg:pub.10.1186/s12882-017-0793-1
9 https://app.dimensions.ai/details/publication/pub.1079218134
10 https://doi.org/10.1016/j.ejrad.2018.02.036
11 https://doi.org/10.1016/s0140-6736(09)60212-9
12 https://doi.org/10.1053/j.jrn.2017.04.007
13 https://doi.org/10.1093/ndt/gfy067
14 https://doi.org/10.1111/hdi.12138
15 https://doi.org/10.1111/j.1542-4758.2008.00302.x
16 https://doi.org/10.1126/science.1259439
17 https://doi.org/10.2215/cjn.01440209
18 schema:datePublished 2018-10
19 schema:datePublishedReg 2018-10-01
20 schema:description BACKGROUND: Dry weight is the lowest weight patients on hemodialysis can tolerate; correct dry weight estimation is necessary to minimize morbi-mortality, but is difficult to achieve. Here, we used artificial intelligence to improve the accuracy of dry weight assessment in hemodialysis patients. METHODS/RESULTS: We designed a neural network which used bio-impedancemetry, blood volume monitoring, and blood pressure values as inputs; output was artificial intelligence dry weight. Fourteen pediatric patients were switched from nephrologist to artificial intelligence dry weight. Artificial intelligence dry weight was higher (28.6%), lower (50%), or identical to nephrologist dry weight. Mean difference between artificial intelligence and nephrologist dry weights was 0.497 kg (- 1.33 to + 1.29 kg). In patients for whom artificial intelligence dry weight was lower than nephrologist dry weight, systolic blood pressure significantly decreased after dry weight decrease to artificial intelligence dry weight (77th to 60th percentile, p = 0.022); anti-hypertensive treatments were successfully decreased or discontinued in 28.7% of cases. In patients for whom artificial intelligence dry weight was higher than nephrologist dry weight, no hypertension was observed after dry weight increase to artificial intelligence dry weight; when present, symptoms of dry weight underestimation receded. CONCLUSIONS: Neural network predictions outperformed those of experienced nephrologists in most cases, proving artificial intelligence is a powerful tool for predicting dry weight in hemodialysis patients.
21 schema:genre research_article
22 schema:inLanguage en
23 schema:isAccessibleForFree false
24 schema:isPartOf N008e8659a5074e76be07412562bbf5ab
25 N95b5fd39da8944f187ea6a238db35098
26 sg:journal.1097267
27 schema:name Artificial intelligence outperforms experienced nephrologists to assess dry weight in pediatric patients on chronic hemodialysis
28 schema:pagination 1799-1803
29 schema:productId N0504c641bedc4ea6b0deda46b899b55a
30 N058604247c7646a591c83ea128ec9af0
31 N1ec5384d259048e7b1dda7ffeff7df61
32 Ncedbc44141324e93b597632cdc800fd4
33 Nf6ae1d6d34d84241a91de8c5756b2e20
34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105426491
35 https://doi.org/10.1007/s00467-018-4015-2
36 schema:sdDatePublished 2019-04-10T21:00
37 schema:sdLicense https://scigraph.springernature.com/explorer/license/
38 schema:sdPublisher Ncc936e5674304d109136cd822897da15
39 schema:url http://link.springer.com/10.1007%2Fs00467-018-4015-2
40 sgo:license sg:explorer/license/
41 sgo:sdDataset articles
42 rdf:type schema:ScholarlyArticle
43 N008e8659a5074e76be07412562bbf5ab schema:volumeNumber 33
44 rdf:type schema:PublicationVolume
45 N0504c641bedc4ea6b0deda46b899b55a schema:name doi
46 schema:value 10.1007/s00467-018-4015-2
47 rdf:type schema:PropertyValue
48 N058604247c7646a591c83ea128ec9af0 schema:name pubmed_id
49 schema:value 29987454
50 rdf:type schema:PropertyValue
51 N1ec5384d259048e7b1dda7ffeff7df61 schema:name readcube_id
52 schema:value 044eb59c8f727d0b5bfe0342b220b2b6108ecdeb085695e9a019440279066cb9
53 rdf:type schema:PropertyValue
54 N2e2d5bbd662e45db97ae9d445bb64b6b rdf:first sg:person.01345603567.82
55 rdf:rest rdf:nil
56 N324ed5f5e0ea4ffd8765951731491e6e rdf:first sg:person.01354315031.50
57 rdf:rest Nb122195b37964aa788702374c7af9f27
58 N4f6f102f914d422eba365b8637741e4e rdf:first sg:person.010535600612.41
59 rdf:rest Ndab4714557f140148cedd4cd10df087e
60 N95b5fd39da8944f187ea6a238db35098 schema:issueNumber 10
61 rdf:type schema:PublicationIssue
62 Nb122195b37964aa788702374c7af9f27 rdf:first sg:person.01147040403.92
63 rdf:rest N2e2d5bbd662e45db97ae9d445bb64b6b
64 Nc8342fe88f994036b003025e62e92699 rdf:first sg:person.01077331365.22
65 rdf:rest N4f6f102f914d422eba365b8637741e4e
66 Ncc936e5674304d109136cd822897da15 schema:name Springer Nature - SN SciGraph project
67 rdf:type schema:Organization
68 Ncedbc44141324e93b597632cdc800fd4 schema:name nlm_unique_id
69 schema:value 8708728
70 rdf:type schema:PropertyValue
71 Ndab4714557f140148cedd4cd10df087e rdf:first sg:person.016452460024.29
72 rdf:rest N324ed5f5e0ea4ffd8765951731491e6e
73 Nf6ae1d6d34d84241a91de8c5756b2e20 schema:name dimensions_id
74 schema:value pub.1105426491
75 rdf:type schema:PropertyValue
76 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
77 schema:name Information and Computing Sciences
78 rdf:type schema:DefinedTerm
79 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
80 schema:name Artificial Intelligence and Image Processing
81 rdf:type schema:DefinedTerm
82 sg:journal.1097267 schema:issn 0931-041X
83 1432-198X
84 schema:name Pediatric Nephrology
85 rdf:type schema:Periodical
86 sg:person.010535600612.41 schema:affiliation https://www.grid.ac/institutes/grid.413235.2
87 schema:familyName Bastard
88 schema:givenName Paul
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010535600612.41
90 rdf:type schema:Person
91 sg:person.01077331365.22 schema:affiliation https://www.grid.ac/institutes/grid.413235.2
92 schema:familyName Niel
93 schema:givenName Olivier
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01077331365.22
95 rdf:type schema:Person
96 sg:person.01147040403.92 schema:affiliation https://www.grid.ac/institutes/grid.413235.2
97 schema:familyName Kwon
98 schema:givenName Thérésa
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01147040403.92
100 rdf:type schema:Person
101 sg:person.01345603567.82 schema:affiliation https://www.grid.ac/institutes/grid.413235.2
102 schema:familyName Deschênes
103 schema:givenName Georges
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01345603567.82
105 rdf:type schema:Person
106 sg:person.01354315031.50 schema:affiliation https://www.grid.ac/institutes/grid.413235.2
107 schema:familyName Hogan
108 schema:givenName Julien
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01354315031.50
110 rdf:type schema:Person
111 sg:person.016452460024.29 schema:affiliation https://www.grid.ac/institutes/grid.413235.2
112 schema:familyName Boussard
113 schema:givenName Charlotte
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016452460024.29
115 rdf:type schema:Person
116 sg:pub.10.1007/s00467-008-0831-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018417369
117 https://doi.org/10.1007/s00467-008-0831-0
118 rdf:type schema:CreativeWork
119 sg:pub.10.1007/s00467-015-3086-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006990504
120 https://doi.org/10.1007/s00467-015-3086-6
121 rdf:type schema:CreativeWork
122 sg:pub.10.1007/s00467-016-3431-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029341987
123 https://doi.org/10.1007/s00467-016-3431-4
124 rdf:type schema:CreativeWork
125 sg:pub.10.1007/s00467-017-3666-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085935341
126 https://doi.org/10.1007/s00467-017-3666-8
127 rdf:type schema:CreativeWork
128 sg:pub.10.1186/s12882-017-0793-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100086778
129 https://doi.org/10.1186/s12882-017-0793-1
130 rdf:type schema:CreativeWork
131 https://app.dimensions.ai/details/publication/pub.1079218134 schema:CreativeWork
132 https://doi.org/10.1016/j.ejrad.2018.02.036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101296607
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/s0140-6736(09)60212-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032373946
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1053/j.jrn.2017.04.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085986287
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1093/ndt/gfy067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101490325
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1111/hdi.12138 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026163331
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1111/j.1542-4758.2008.00302.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1047341906
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1126/science.1259439 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020323585
145 rdf:type schema:CreativeWork
146 https://doi.org/10.2215/cjn.01440209 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027458278
147 rdf:type schema:CreativeWork
148 https://www.grid.ac/institutes/grid.413235.2 schema:alternateName Hôpital Robert Debré
149 schema:name Pediatric Nephrology Department, Robert Debré Hospital, 48 Boulevard Sérurier, 75019, Paris, France
150 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...