Response analysis of stochastic parameter structures under non-stationary random excitation View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2001-01

AUTHORS

Jie Li, Songtao Liao

ABSTRACT

The stochastic orthogonal polynomial expansion method is extended with the pseudo-excitation method in this paper. This extension enables the stochastic orthogonal polynomial method to be readily used in the analysis of stochastic parameter structures under non-stationary random excitation. The probabilistic information of structural response, such as the power spectral density, standard deviation function, etc. can be obtained directly with this method. A dynamic condensation algorithm for order-expanded equation resulting from the orthogonal polynomial expansion method is also presented in this paper. The applicability of the proposed methodology is demonstrated by numerical examples. More... »

PAGES

61-68

Journal

TITLE

Computational Mechanics

ISSUE

1

VOLUME

27

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s004660000214

DOI

http://dx.doi.org/10.1007/s004660000214

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1015415354


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Tongji University", 
          "id": "https://www.grid.ac/institutes/grid.24516.34", 
          "name": [
            "Department of Building Engineering, Tongji University, Shanghai, P. R. China 200092, CN"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Jie", 
        "id": "sg:person.013315072274.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013315072274.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tongji University", 
          "id": "https://www.grid.ac/institutes/grid.24516.34", 
          "name": [
            "Department of Building Engineering, Tongji University, Shanghai, P. R. China 200092, CN"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liao", 
        "givenName": "Songtao", 
        "type": "Person"
      }
    ], 
    "datePublished": "2001-01", 
    "datePublishedReg": "2001-01-01", 
    "description": "The stochastic orthogonal polynomial expansion method is extended with the pseudo-excitation method in this paper. This extension enables the stochastic orthogonal polynomial method to be readily used in the analysis of stochastic parameter structures under non-stationary random excitation. The probabilistic information of structural response, such as the power spectral density, standard deviation function, etc. can be obtained directly with this method. A dynamic condensation algorithm for order-expanded equation resulting from the orthogonal polynomial expansion method is also presented in this paper. The applicability of the proposed methodology is demonstrated by numerical examples.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s004660000214", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1127263", 
        "issn": [
          "0178-7675", 
          "1432-0924"
        ], 
        "name": "Computational Mechanics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "27"
      }
    ], 
    "name": "Response analysis of stochastic parameter structures under non-stationary random excitation", 
    "pagination": "61-68", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "4972f88418ee67212e2bad4ea1c9ab4088262ba6bd9382291584277742680220"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s004660000214"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1015415354"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s004660000214", 
      "https://app.dimensions.ai/details/publication/pub.1015415354"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T16:36", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000487.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s004660000214"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s004660000214'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s004660000214'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s004660000214'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s004660000214'


 

This table displays all metadata directly associated to this object as RDF triples.

67 TRIPLES      20 PREDICATES      27 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s004660000214 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N8cc4b02d997f4e1cb0a631bf8b82caf0
4 schema:datePublished 2001-01
5 schema:datePublishedReg 2001-01-01
6 schema:description The stochastic orthogonal polynomial expansion method is extended with the pseudo-excitation method in this paper. This extension enables the stochastic orthogonal polynomial method to be readily used in the analysis of stochastic parameter structures under non-stationary random excitation. The probabilistic information of structural response, such as the power spectral density, standard deviation function, etc. can be obtained directly with this method. A dynamic condensation algorithm for order-expanded equation resulting from the orthogonal polynomial expansion method is also presented in this paper. The applicability of the proposed methodology is demonstrated by numerical examples.
7 schema:genre research_article
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf N78f9ba16bddc4a2188f4426ca74f2572
11 N7cb71a84f1b64baf8f106b8879b7d1b3
12 sg:journal.1127263
13 schema:name Response analysis of stochastic parameter structures under non-stationary random excitation
14 schema:pagination 61-68
15 schema:productId N8114691489154ce0a7e0a55638aa4f0a
16 Nb7c29e3cbf90479c8305af2744187d69
17 Nf4f806eeb4954af1852ec1948f4d575f
18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015415354
19 https://doi.org/10.1007/s004660000214
20 schema:sdDatePublished 2019-04-10T16:36
21 schema:sdLicense https://scigraph.springernature.com/explorer/license/
22 schema:sdPublisher N22d9da1fa4ec429eae693f97da389d06
23 schema:url http://link.springer.com/10.1007/s004660000214
24 sgo:license sg:explorer/license/
25 sgo:sdDataset articles
26 rdf:type schema:ScholarlyArticle
27 N17dee94400324d289c42a1d67d46362a rdf:first Na4a864348f624830aaf4f3eb0645873d
28 rdf:rest rdf:nil
29 N22d9da1fa4ec429eae693f97da389d06 schema:name Springer Nature - SN SciGraph project
30 rdf:type schema:Organization
31 N78f9ba16bddc4a2188f4426ca74f2572 schema:volumeNumber 27
32 rdf:type schema:PublicationVolume
33 N7cb71a84f1b64baf8f106b8879b7d1b3 schema:issueNumber 1
34 rdf:type schema:PublicationIssue
35 N8114691489154ce0a7e0a55638aa4f0a schema:name readcube_id
36 schema:value 4972f88418ee67212e2bad4ea1c9ab4088262ba6bd9382291584277742680220
37 rdf:type schema:PropertyValue
38 N8cc4b02d997f4e1cb0a631bf8b82caf0 rdf:first sg:person.013315072274.52
39 rdf:rest N17dee94400324d289c42a1d67d46362a
40 Na4a864348f624830aaf4f3eb0645873d schema:affiliation https://www.grid.ac/institutes/grid.24516.34
41 schema:familyName Liao
42 schema:givenName Songtao
43 rdf:type schema:Person
44 Nb7c29e3cbf90479c8305af2744187d69 schema:name doi
45 schema:value 10.1007/s004660000214
46 rdf:type schema:PropertyValue
47 Nf4f806eeb4954af1852ec1948f4d575f schema:name dimensions_id
48 schema:value pub.1015415354
49 rdf:type schema:PropertyValue
50 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
51 schema:name Mathematical Sciences
52 rdf:type schema:DefinedTerm
53 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
54 schema:name Statistics
55 rdf:type schema:DefinedTerm
56 sg:journal.1127263 schema:issn 0178-7675
57 1432-0924
58 schema:name Computational Mechanics
59 rdf:type schema:Periodical
60 sg:person.013315072274.52 schema:affiliation https://www.grid.ac/institutes/grid.24516.34
61 schema:familyName Li
62 schema:givenName Jie
63 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013315072274.52
64 rdf:type schema:Person
65 https://www.grid.ac/institutes/grid.24516.34 schema:alternateName Tongji University
66 schema:name Department of Building Engineering, Tongji University, Shanghai, P. R. China 200092, CN
67 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...