Response analysis of stochastic parameter structures under non-stationary random excitation View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2001-01

AUTHORS

Jie Li, Songtao Liao

ABSTRACT

The stochastic orthogonal polynomial expansion method is extended with the pseudo-excitation method in this paper. This extension enables the stochastic orthogonal polynomial method to be readily used in the analysis of stochastic parameter structures under non-stationary random excitation. The probabilistic information of structural response, such as the power spectral density, standard deviation function, etc. can be obtained directly with this method. A dynamic condensation algorithm for order-expanded equation resulting from the orthogonal polynomial expansion method is also presented in this paper. The applicability of the proposed methodology is demonstrated by numerical examples. More... »

PAGES

61-68

Journal

TITLE

Computational Mechanics

ISSUE

1

VOLUME

27

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s004660000214

DOI

http://dx.doi.org/10.1007/s004660000214

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1015415354


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Tongji University", 
          "id": "https://www.grid.ac/institutes/grid.24516.34", 
          "name": [
            "Department of Building Engineering, Tongji University, Shanghai, P. R. China 200092, CN"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Jie", 
        "id": "sg:person.013315072274.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013315072274.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tongji University", 
          "id": "https://www.grid.ac/institutes/grid.24516.34", 
          "name": [
            "Department of Building Engineering, Tongji University, Shanghai, P. R. China 200092, CN"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liao", 
        "givenName": "Songtao", 
        "type": "Person"
      }
    ], 
    "datePublished": "2001-01", 
    "datePublishedReg": "2001-01-01", 
    "description": "The stochastic orthogonal polynomial expansion method is extended with the pseudo-excitation method in this paper. This extension enables the stochastic orthogonal polynomial method to be readily used in the analysis of stochastic parameter structures under non-stationary random excitation. The probabilistic information of structural response, such as the power spectral density, standard deviation function, etc. can be obtained directly with this method. A dynamic condensation algorithm for order-expanded equation resulting from the orthogonal polynomial expansion method is also presented in this paper. The applicability of the proposed methodology is demonstrated by numerical examples.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s004660000214", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1127263", 
        "issn": [
          "0178-7675", 
          "1432-0924"
        ], 
        "name": "Computational Mechanics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "27"
      }
    ], 
    "name": "Response analysis of stochastic parameter structures under non-stationary random excitation", 
    "pagination": "61-68", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "4972f88418ee67212e2bad4ea1c9ab4088262ba6bd9382291584277742680220"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s004660000214"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1015415354"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s004660000214", 
      "https://app.dimensions.ai/details/publication/pub.1015415354"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T16:36", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000487.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s004660000214"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s004660000214'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s004660000214'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s004660000214'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s004660000214'


 

This table displays all metadata directly associated to this object as RDF triples.

67 TRIPLES      20 PREDICATES      27 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s004660000214 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author Nafee4e57e7374f82a96e6391be486080
4 schema:datePublished 2001-01
5 schema:datePublishedReg 2001-01-01
6 schema:description The stochastic orthogonal polynomial expansion method is extended with the pseudo-excitation method in this paper. This extension enables the stochastic orthogonal polynomial method to be readily used in the analysis of stochastic parameter structures under non-stationary random excitation. The probabilistic information of structural response, such as the power spectral density, standard deviation function, etc. can be obtained directly with this method. A dynamic condensation algorithm for order-expanded equation resulting from the orthogonal polynomial expansion method is also presented in this paper. The applicability of the proposed methodology is demonstrated by numerical examples.
7 schema:genre research_article
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf N1e5c367945c44d4882e8f746e678bb35
11 Nbafe9b41075f4b35bd31f0c016f0317a
12 sg:journal.1127263
13 schema:name Response analysis of stochastic parameter structures under non-stationary random excitation
14 schema:pagination 61-68
15 schema:productId N09ea797feebe43648bde40c1e0f7703e
16 Nb10ddcbbaf1046e5af68d1ef18d7a5ad
17 Nfe000b13e9a94c9abfd935f4627d25b3
18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015415354
19 https://doi.org/10.1007/s004660000214
20 schema:sdDatePublished 2019-04-10T16:36
21 schema:sdLicense https://scigraph.springernature.com/explorer/license/
22 schema:sdPublisher N90a0643ea5ed4a0098795cebc898bd94
23 schema:url http://link.springer.com/10.1007/s004660000214
24 sgo:license sg:explorer/license/
25 sgo:sdDataset articles
26 rdf:type schema:ScholarlyArticle
27 N09ea797feebe43648bde40c1e0f7703e schema:name readcube_id
28 schema:value 4972f88418ee67212e2bad4ea1c9ab4088262ba6bd9382291584277742680220
29 rdf:type schema:PropertyValue
30 N0bafd236a7524d189aad428288fcc6c7 rdf:first Nb7f8344bb4c646679417a47c532c1d43
31 rdf:rest rdf:nil
32 N1e5c367945c44d4882e8f746e678bb35 schema:volumeNumber 27
33 rdf:type schema:PublicationVolume
34 N90a0643ea5ed4a0098795cebc898bd94 schema:name Springer Nature - SN SciGraph project
35 rdf:type schema:Organization
36 Nafee4e57e7374f82a96e6391be486080 rdf:first sg:person.013315072274.52
37 rdf:rest N0bafd236a7524d189aad428288fcc6c7
38 Nb10ddcbbaf1046e5af68d1ef18d7a5ad schema:name dimensions_id
39 schema:value pub.1015415354
40 rdf:type schema:PropertyValue
41 Nb7f8344bb4c646679417a47c532c1d43 schema:affiliation https://www.grid.ac/institutes/grid.24516.34
42 schema:familyName Liao
43 schema:givenName Songtao
44 rdf:type schema:Person
45 Nbafe9b41075f4b35bd31f0c016f0317a schema:issueNumber 1
46 rdf:type schema:PublicationIssue
47 Nfe000b13e9a94c9abfd935f4627d25b3 schema:name doi
48 schema:value 10.1007/s004660000214
49 rdf:type schema:PropertyValue
50 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
51 schema:name Mathematical Sciences
52 rdf:type schema:DefinedTerm
53 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
54 schema:name Statistics
55 rdf:type schema:DefinedTerm
56 sg:journal.1127263 schema:issn 0178-7675
57 1432-0924
58 schema:name Computational Mechanics
59 rdf:type schema:Periodical
60 sg:person.013315072274.52 schema:affiliation https://www.grid.ac/institutes/grid.24516.34
61 schema:familyName Li
62 schema:givenName Jie
63 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013315072274.52
64 rdf:type schema:Person
65 https://www.grid.ac/institutes/grid.24516.34 schema:alternateName Tongji University
66 schema:name Department of Building Engineering, Tongji University, Shanghai, P. R. China 200092, CN
67 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...