Response analysis of stochastic parameter structures under non-stationary random excitation View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2001-01

AUTHORS

Jie Li, Songtao Liao

ABSTRACT

The stochastic orthogonal polynomial expansion method is extended with the pseudo-excitation method in this paper. This extension enables the stochastic orthogonal polynomial method to be readily used in the analysis of stochastic parameter structures under non-stationary random excitation. The probabilistic information of structural response, such as the power spectral density, standard deviation function, etc. can be obtained directly with this method. A dynamic condensation algorithm for order-expanded equation resulting from the orthogonal polynomial expansion method is also presented in this paper. The applicability of the proposed methodology is demonstrated by numerical examples. More... »

PAGES

61-68

Journal

TITLE

Computational Mechanics

ISSUE

1

VOLUME

27

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s004660000214

DOI

http://dx.doi.org/10.1007/s004660000214

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1015415354


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Tongji University", 
          "id": "https://www.grid.ac/institutes/grid.24516.34", 
          "name": [
            "Department of Building Engineering, Tongji University, Shanghai, P. R. China 200092, CN"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Jie", 
        "id": "sg:person.013315072274.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013315072274.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tongji University", 
          "id": "https://www.grid.ac/institutes/grid.24516.34", 
          "name": [
            "Department of Building Engineering, Tongji University, Shanghai, P. R. China 200092, CN"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liao", 
        "givenName": "Songtao", 
        "type": "Person"
      }
    ], 
    "datePublished": "2001-01", 
    "datePublishedReg": "2001-01-01", 
    "description": "The stochastic orthogonal polynomial expansion method is extended with the pseudo-excitation method in this paper. This extension enables the stochastic orthogonal polynomial method to be readily used in the analysis of stochastic parameter structures under non-stationary random excitation. The probabilistic information of structural response, such as the power spectral density, standard deviation function, etc. can be obtained directly with this method. A dynamic condensation algorithm for order-expanded equation resulting from the orthogonal polynomial expansion method is also presented in this paper. The applicability of the proposed methodology is demonstrated by numerical examples.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s004660000214", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1127263", 
        "issn": [
          "0178-7675", 
          "1432-0924"
        ], 
        "name": "Computational Mechanics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "27"
      }
    ], 
    "name": "Response analysis of stochastic parameter structures under non-stationary random excitation", 
    "pagination": "61-68", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "4972f88418ee67212e2bad4ea1c9ab4088262ba6bd9382291584277742680220"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s004660000214"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1015415354"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s004660000214", 
      "https://app.dimensions.ai/details/publication/pub.1015415354"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T16:36", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000487.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s004660000214"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s004660000214'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s004660000214'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s004660000214'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s004660000214'


 

This table displays all metadata directly associated to this object as RDF triples.

67 TRIPLES      20 PREDICATES      27 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s004660000214 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author Ne4b3908e1f8644c4ab361315fdc49742
4 schema:datePublished 2001-01
5 schema:datePublishedReg 2001-01-01
6 schema:description The stochastic orthogonal polynomial expansion method is extended with the pseudo-excitation method in this paper. This extension enables the stochastic orthogonal polynomial method to be readily used in the analysis of stochastic parameter structures under non-stationary random excitation. The probabilistic information of structural response, such as the power spectral density, standard deviation function, etc. can be obtained directly with this method. A dynamic condensation algorithm for order-expanded equation resulting from the orthogonal polynomial expansion method is also presented in this paper. The applicability of the proposed methodology is demonstrated by numerical examples.
7 schema:genre research_article
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf N64d3fc5ae8284cc3a5a4016ee58be6bc
11 Nf32cc9ee53364f1c8056d7cd197f1da6
12 sg:journal.1127263
13 schema:name Response analysis of stochastic parameter structures under non-stationary random excitation
14 schema:pagination 61-68
15 schema:productId N15fd3eb61f744586ab7c166b6336ae11
16 N210296d7f9af447183e49de0a56b090e
17 Nb5d3e69c22454842b9de4e342b3fb1c2
18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015415354
19 https://doi.org/10.1007/s004660000214
20 schema:sdDatePublished 2019-04-10T16:36
21 schema:sdLicense https://scigraph.springernature.com/explorer/license/
22 schema:sdPublisher Ncfa528413ed1441693e3ad3442e0c11d
23 schema:url http://link.springer.com/10.1007/s004660000214
24 sgo:license sg:explorer/license/
25 sgo:sdDataset articles
26 rdf:type schema:ScholarlyArticle
27 N15fd3eb61f744586ab7c166b6336ae11 schema:name readcube_id
28 schema:value 4972f88418ee67212e2bad4ea1c9ab4088262ba6bd9382291584277742680220
29 rdf:type schema:PropertyValue
30 N210296d7f9af447183e49de0a56b090e schema:name dimensions_id
31 schema:value pub.1015415354
32 rdf:type schema:PropertyValue
33 N64d3fc5ae8284cc3a5a4016ee58be6bc schema:volumeNumber 27
34 rdf:type schema:PublicationVolume
35 Nb5d3e69c22454842b9de4e342b3fb1c2 schema:name doi
36 schema:value 10.1007/s004660000214
37 rdf:type schema:PropertyValue
38 Nb76765541b2c428493cfaf3e08e6b99b schema:affiliation https://www.grid.ac/institutes/grid.24516.34
39 schema:familyName Liao
40 schema:givenName Songtao
41 rdf:type schema:Person
42 Nc4c19144f3f248cfbc84c8976f281573 rdf:first Nb76765541b2c428493cfaf3e08e6b99b
43 rdf:rest rdf:nil
44 Ncfa528413ed1441693e3ad3442e0c11d schema:name Springer Nature - SN SciGraph project
45 rdf:type schema:Organization
46 Ne4b3908e1f8644c4ab361315fdc49742 rdf:first sg:person.013315072274.52
47 rdf:rest Nc4c19144f3f248cfbc84c8976f281573
48 Nf32cc9ee53364f1c8056d7cd197f1da6 schema:issueNumber 1
49 rdf:type schema:PublicationIssue
50 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
51 schema:name Mathematical Sciences
52 rdf:type schema:DefinedTerm
53 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
54 schema:name Statistics
55 rdf:type schema:DefinedTerm
56 sg:journal.1127263 schema:issn 0178-7675
57 1432-0924
58 schema:name Computational Mechanics
59 rdf:type schema:Periodical
60 sg:person.013315072274.52 schema:affiliation https://www.grid.ac/institutes/grid.24516.34
61 schema:familyName Li
62 schema:givenName Jie
63 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013315072274.52
64 rdf:type schema:Person
65 https://www.grid.ac/institutes/grid.24516.34 schema:alternateName Tongji University
66 schema:name Department of Building Engineering, Tongji University, Shanghai, P. R. China 200092, CN
67 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...