Investigation of heat source modeling for selective laser melting View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-05

AUTHORS

H. Wessels, T. Bode, C. Weißenfels, P. Wriggers, T. I. Zohdi

ABSTRACT

Selective Laser Melting (SLM) is an emerging Additive Manufacturing technology for metals. Complex three dimensional parts can be generated from a powder bed by locally melting the desired portions layer by layer. The necessary heat is provided by a laser. The laser–matter interaction is a crucial physical phenomenon in the SLM process. Various modeling approaches with different degrees of complexity exist in the literature to represent the laser–matter interaction within a numerical framework. Often, the laser energy is simply distributed into a specified volume. A more precise approach is ray tracing. The laser beam can be divided into moving discrete energy portions (rays) that are traced in space and time. In order to compute the reflection and absorption usually a triangulation of the free surface is conducted. Within meshfree methods, this is a very expensive operation. In this work, a computationally efficient algorithm is developed which avoids triangulation and can easily be combined with meshfree methods. Here, the suggested ray tracing algorithm is exemplary coupled with the stabilized Optimal Transportation Meshfree Method. The importance of ray tracing is evaluated by simulating the fusion of metal powder particles. A comparison of the results with a volumetric heat source approach shows that ray tracing significantly improves the accuracy of absorption and vaporization. More... »

PAGES

1-22

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00466-018-1631-4

DOI

http://dx.doi.org/10.1007/s00466-018-1631-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1107273140


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Hannover", 
          "id": "https://www.grid.ac/institutes/grid.9122.8", 
          "name": [
            "Institute of Continuum Mechanics, Leibniz University of Hannover, Appelstr. 11, 30167, Hannover, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wessels", 
        "givenName": "H.", 
        "id": "sg:person.014450110521.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014450110521.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Hannover", 
          "id": "https://www.grid.ac/institutes/grid.9122.8", 
          "name": [
            "Institute of Continuum Mechanics, Leibniz University of Hannover, Appelstr. 11, 30167, Hannover, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bode", 
        "givenName": "T.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Hannover", 
          "id": "https://www.grid.ac/institutes/grid.9122.8", 
          "name": [
            "Institute of Continuum Mechanics, Leibniz University of Hannover, Appelstr. 11, 30167, Hannover, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wei\u00dfenfels", 
        "givenName": "C.", 
        "id": "sg:person.014354644765.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014354644765.71"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Hannover", 
          "id": "https://www.grid.ac/institutes/grid.9122.8", 
          "name": [
            "Institute of Continuum Mechanics, Leibniz University of Hannover, Appelstr. 11, 30167, Hannover, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wriggers", 
        "givenName": "P.", 
        "id": "sg:person.0757556305.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0757556305.64"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California, Berkeley", 
          "id": "https://www.grid.ac/institutes/grid.47840.3f", 
          "name": [
            "Department of Mechanical Engineering, 6117 Etcheverry Hall, University of California, 94720-1740, Berkeley, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zohdi", 
        "givenName": "T. I.", 
        "id": "sg:person.07676223166.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07676223166.38"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.jmatprotec.2014.06.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001079913"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-56865-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001845477", 
          "https://doi.org/10.1007/978-3-642-56865-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-56865-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001845477", 
          "https://doi.org/10.1007/978-3-642-56865-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10035-016-0626-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002174803", 
          "https://doi.org/10.1007/s10035-016-0626-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11831-013-9092-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006122034", 
          "https://doi.org/10.1007/s11831-013-9092-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cma.2010.06.032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006139205"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmatprotec.2009.09.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010265113"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mechmat.2005.06.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012602602"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/nme.1534", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015117310"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/nme.1534", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015117310"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00466-014-1012-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015310467", 
          "https://doi.org/10.1007/s00466-014-1012-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02667333", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015516438", 
          "https://doi.org/10.1007/bf02667333"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cma.2005.04.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017101949"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0017-9310(73)90202-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017285744"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0021-9991(92)90240-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019586095"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00466-015-1170-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023349781", 
          "https://doi.org/10.1007/s00466-015-1170-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/nme.2869", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023525019"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/nme.2869", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023525019"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rsif.2006.0139", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024220420"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-32609-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024243429", 
          "https://doi.org/10.1007/978-3-540-32609-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-32609-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024243429", 
          "https://doi.org/10.1007/978-3-540-32609-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2016.02.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025565728"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2016.02.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025565728"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2016.02.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025565728"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2016.02.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025565728"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40571-016-0140-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028245411", 
          "https://doi.org/10.1007/s40571-016-0140-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40571-016-0140-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028245411", 
          "https://doi.org/10.1007/s40571-016-0140-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cirpj.2015.05.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032758418"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.camwa.2013.10.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037550382"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11661-002-0190-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037958271", 
          "https://doi.org/10.1007/s11661-002-0190-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11661-002-0190-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037958271", 
          "https://doi.org/10.1007/s11661-002-0190-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/nme.2793", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038327180"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/nme.2793", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038327180"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40571-016-0118-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044813086", 
          "https://doi.org/10.1007/s40571-016-0118-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40571-016-0118-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044813086", 
          "https://doi.org/10.1007/s40571-016-0118-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/gamm.201610010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047339776"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijengsci.2014.12.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047501330"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-68095-6_4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048690681", 
          "https://doi.org/10.1007/978-3-540-68095-6_4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0020-7683(75)90015-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049927671"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0020-7683(75)90015-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049927671"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1179/1743280411y.0000000014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050173630"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11831-015-9160-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052240980", 
          "https://doi.org/10.1007/s11831-015-9160-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.3109245", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062101516"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.3109245", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062101516"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2017.05.061", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085737064"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cma.2017.09.031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092293201"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00466-017-1503-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092692907", 
          "https://doi.org/10.1007/s00466-017-1503-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cma.2017.11.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092728211"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cma.2018.04.042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103839869"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-05", 
    "datePublishedReg": "2019-05-01", 
    "description": "Selective Laser Melting (SLM) is an emerging Additive Manufacturing technology for metals. Complex three dimensional parts can be generated from a powder bed by locally melting the desired portions layer by layer. The necessary heat is provided by a laser. The laser\u2013matter interaction is a crucial physical phenomenon in the SLM process. Various modeling approaches with different degrees of complexity exist in the literature to represent the laser\u2013matter interaction within a numerical framework. Often, the laser energy is simply distributed into a specified volume. A more precise approach is ray tracing. The laser beam can be divided into moving discrete energy portions (rays) that are traced in space and time. In order to compute the reflection and absorption usually a triangulation of the free surface is conducted. Within meshfree methods, this is a very expensive operation. In this work, a computationally efficient algorithm is developed which avoids triangulation and can easily be combined with meshfree methods. Here, the suggested ray tracing algorithm is exemplary coupled with the stabilized Optimal Transportation Meshfree Method. The importance of ray tracing is evaluated by simulating the fusion of metal powder particles. A comparison of the results with a volumetric heat source approach shows that ray tracing significantly improves the accuracy of absorption and vaporization.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00466-018-1631-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1127263", 
        "issn": [
          "0178-7675", 
          "1432-0924"
        ], 
        "name": "Computational Mechanics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "63"
      }
    ], 
    "name": "Investigation of heat source modeling for selective laser melting", 
    "pagination": "1-22", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "34ae4f49d03e56c0e56cedb650835587627898e4f18133e32d575f5e6d9bb9a9"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00466-018-1631-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1107273140"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00466-018-1631-4", 
      "https://app.dimensions.ai/details/publication/pub.1107273140"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T14:16", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000372_0000000372/records_117088_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00466-018-1631-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00466-018-1631-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00466-018-1631-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00466-018-1631-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00466-018-1631-4'


 

This table displays all metadata directly associated to this object as RDF triples.

212 TRIPLES      21 PREDICATES      63 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00466-018-1631-4 schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author N900d5c0475ff49c2b77525db8f94bd08
4 schema:citation sg:pub.10.1007/978-3-540-32609-0
5 sg:pub.10.1007/978-3-540-68095-6_4
6 sg:pub.10.1007/978-3-642-56865-7
7 sg:pub.10.1007/bf02667333
8 sg:pub.10.1007/s00466-014-1012-6
9 sg:pub.10.1007/s00466-015-1170-1
10 sg:pub.10.1007/s00466-017-1503-3
11 sg:pub.10.1007/s10035-016-0626-0
12 sg:pub.10.1007/s11661-002-0190-6
13 sg:pub.10.1007/s11831-013-9092-6
14 sg:pub.10.1007/s11831-015-9160-1
15 sg:pub.10.1007/s40571-016-0118-3
16 sg:pub.10.1007/s40571-016-0140-5
17 https://doi.org/10.1002/gamm.201610010
18 https://doi.org/10.1002/nme.1534
19 https://doi.org/10.1002/nme.2793
20 https://doi.org/10.1002/nme.2869
21 https://doi.org/10.1016/0017-9310(73)90202-0
22 https://doi.org/10.1016/0020-7683(75)90015-3
23 https://doi.org/10.1016/0021-9991(92)90240-y
24 https://doi.org/10.1016/j.actamat.2016.02.014
25 https://doi.org/10.1016/j.actamat.2017.05.061
26 https://doi.org/10.1016/j.camwa.2013.10.001
27 https://doi.org/10.1016/j.cirpj.2015.05.001
28 https://doi.org/10.1016/j.cma.2005.04.023
29 https://doi.org/10.1016/j.cma.2010.06.032
30 https://doi.org/10.1016/j.cma.2017.09.031
31 https://doi.org/10.1016/j.cma.2017.11.003
32 https://doi.org/10.1016/j.cma.2018.04.042
33 https://doi.org/10.1016/j.ijengsci.2014.12.002
34 https://doi.org/10.1016/j.jmatprotec.2009.09.011
35 https://doi.org/10.1016/j.jmatprotec.2014.06.001
36 https://doi.org/10.1016/j.mechmat.2005.06.025
37 https://doi.org/10.1098/rsif.2006.0139
38 https://doi.org/10.1115/1.3109245
39 https://doi.org/10.1179/1743280411y.0000000014
40 schema:datePublished 2019-05
41 schema:datePublishedReg 2019-05-01
42 schema:description Selective Laser Melting (SLM) is an emerging Additive Manufacturing technology for metals. Complex three dimensional parts can be generated from a powder bed by locally melting the desired portions layer by layer. The necessary heat is provided by a laser. The laser–matter interaction is a crucial physical phenomenon in the SLM process. Various modeling approaches with different degrees of complexity exist in the literature to represent the laser–matter interaction within a numerical framework. Often, the laser energy is simply distributed into a specified volume. A more precise approach is ray tracing. The laser beam can be divided into moving discrete energy portions (rays) that are traced in space and time. In order to compute the reflection and absorption usually a triangulation of the free surface is conducted. Within meshfree methods, this is a very expensive operation. In this work, a computationally efficient algorithm is developed which avoids triangulation and can easily be combined with meshfree methods. Here, the suggested ray tracing algorithm is exemplary coupled with the stabilized Optimal Transportation Meshfree Method. The importance of ray tracing is evaluated by simulating the fusion of metal powder particles. A comparison of the results with a volumetric heat source approach shows that ray tracing significantly improves the accuracy of absorption and vaporization.
43 schema:genre research_article
44 schema:inLanguage en
45 schema:isAccessibleForFree false
46 schema:isPartOf N6fa702b8090f4df38d25c3bb8b6fcc7b
47 N7543713a6a6d428faac8414795c0d310
48 sg:journal.1127263
49 schema:name Investigation of heat source modeling for selective laser melting
50 schema:pagination 1-22
51 schema:productId Nb6e4dd8d1f6046e7888f1076e25b2791
52 Ndafa0eff96c240e4854f3f3f05a8bf6a
53 Ne488554310bb4265b478e610e0878c21
54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107273140
55 https://doi.org/10.1007/s00466-018-1631-4
56 schema:sdDatePublished 2019-04-11T14:16
57 schema:sdLicense https://scigraph.springernature.com/explorer/license/
58 schema:sdPublisher Nc0297c27c4104732b7b264403cd14690
59 schema:url https://link.springer.com/10.1007%2Fs00466-018-1631-4
60 sgo:license sg:explorer/license/
61 sgo:sdDataset articles
62 rdf:type schema:ScholarlyArticle
63 N0a789dab4c4e41a2aa5cdd1a9c31df01 rdf:first sg:person.014354644765.71
64 rdf:rest N3000fae004d844cab1c2cc9b6fa8a0a2
65 N3000fae004d844cab1c2cc9b6fa8a0a2 rdf:first sg:person.0757556305.64
66 rdf:rest N36f0f755873e41da914281b31a2db002
67 N36f0f755873e41da914281b31a2db002 rdf:first sg:person.07676223166.38
68 rdf:rest rdf:nil
69 N6fa702b8090f4df38d25c3bb8b6fcc7b schema:volumeNumber 63
70 rdf:type schema:PublicationVolume
71 N7543713a6a6d428faac8414795c0d310 schema:issueNumber 5
72 rdf:type schema:PublicationIssue
73 N85bd92ef70364f0c84576d228565dc23 schema:affiliation https://www.grid.ac/institutes/grid.9122.8
74 schema:familyName Bode
75 schema:givenName T.
76 rdf:type schema:Person
77 N900d5c0475ff49c2b77525db8f94bd08 rdf:first sg:person.014450110521.09
78 rdf:rest Ndd08386cbb564cdf89346a310c3bc66b
79 Nb6e4dd8d1f6046e7888f1076e25b2791 schema:name doi
80 schema:value 10.1007/s00466-018-1631-4
81 rdf:type schema:PropertyValue
82 Nc0297c27c4104732b7b264403cd14690 schema:name Springer Nature - SN SciGraph project
83 rdf:type schema:Organization
84 Ndafa0eff96c240e4854f3f3f05a8bf6a schema:name dimensions_id
85 schema:value pub.1107273140
86 rdf:type schema:PropertyValue
87 Ndd08386cbb564cdf89346a310c3bc66b rdf:first N85bd92ef70364f0c84576d228565dc23
88 rdf:rest N0a789dab4c4e41a2aa5cdd1a9c31df01
89 Ne488554310bb4265b478e610e0878c21 schema:name readcube_id
90 schema:value 34ae4f49d03e56c0e56cedb650835587627898e4f18133e32d575f5e6d9bb9a9
91 rdf:type schema:PropertyValue
92 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
93 schema:name Engineering
94 rdf:type schema:DefinedTerm
95 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
96 schema:name Interdisciplinary Engineering
97 rdf:type schema:DefinedTerm
98 sg:journal.1127263 schema:issn 0178-7675
99 1432-0924
100 schema:name Computational Mechanics
101 rdf:type schema:Periodical
102 sg:person.014354644765.71 schema:affiliation https://www.grid.ac/institutes/grid.9122.8
103 schema:familyName Weißenfels
104 schema:givenName C.
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014354644765.71
106 rdf:type schema:Person
107 sg:person.014450110521.09 schema:affiliation https://www.grid.ac/institutes/grid.9122.8
108 schema:familyName Wessels
109 schema:givenName H.
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014450110521.09
111 rdf:type schema:Person
112 sg:person.0757556305.64 schema:affiliation https://www.grid.ac/institutes/grid.9122.8
113 schema:familyName Wriggers
114 schema:givenName P.
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0757556305.64
116 rdf:type schema:Person
117 sg:person.07676223166.38 schema:affiliation https://www.grid.ac/institutes/grid.47840.3f
118 schema:familyName Zohdi
119 schema:givenName T. I.
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07676223166.38
121 rdf:type schema:Person
122 sg:pub.10.1007/978-3-540-32609-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024243429
123 https://doi.org/10.1007/978-3-540-32609-0
124 rdf:type schema:CreativeWork
125 sg:pub.10.1007/978-3-540-68095-6_4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048690681
126 https://doi.org/10.1007/978-3-540-68095-6_4
127 rdf:type schema:CreativeWork
128 sg:pub.10.1007/978-3-642-56865-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001845477
129 https://doi.org/10.1007/978-3-642-56865-7
130 rdf:type schema:CreativeWork
131 sg:pub.10.1007/bf02667333 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015516438
132 https://doi.org/10.1007/bf02667333
133 rdf:type schema:CreativeWork
134 sg:pub.10.1007/s00466-014-1012-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015310467
135 https://doi.org/10.1007/s00466-014-1012-6
136 rdf:type schema:CreativeWork
137 sg:pub.10.1007/s00466-015-1170-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023349781
138 https://doi.org/10.1007/s00466-015-1170-1
139 rdf:type schema:CreativeWork
140 sg:pub.10.1007/s00466-017-1503-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092692907
141 https://doi.org/10.1007/s00466-017-1503-3
142 rdf:type schema:CreativeWork
143 sg:pub.10.1007/s10035-016-0626-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002174803
144 https://doi.org/10.1007/s10035-016-0626-0
145 rdf:type schema:CreativeWork
146 sg:pub.10.1007/s11661-002-0190-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037958271
147 https://doi.org/10.1007/s11661-002-0190-6
148 rdf:type schema:CreativeWork
149 sg:pub.10.1007/s11831-013-9092-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006122034
150 https://doi.org/10.1007/s11831-013-9092-6
151 rdf:type schema:CreativeWork
152 sg:pub.10.1007/s11831-015-9160-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052240980
153 https://doi.org/10.1007/s11831-015-9160-1
154 rdf:type schema:CreativeWork
155 sg:pub.10.1007/s40571-016-0118-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044813086
156 https://doi.org/10.1007/s40571-016-0118-3
157 rdf:type schema:CreativeWork
158 sg:pub.10.1007/s40571-016-0140-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028245411
159 https://doi.org/10.1007/s40571-016-0140-5
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1002/gamm.201610010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047339776
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1002/nme.1534 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015117310
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1002/nme.2793 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038327180
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1002/nme.2869 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023525019
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1016/0017-9310(73)90202-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017285744
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1016/0020-7683(75)90015-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049927671
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1016/0021-9991(92)90240-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1019586095
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1016/j.actamat.2016.02.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025565728
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1016/j.actamat.2017.05.061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085737064
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1016/j.camwa.2013.10.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037550382
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1016/j.cirpj.2015.05.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032758418
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1016/j.cma.2005.04.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017101949
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1016/j.cma.2010.06.032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006139205
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1016/j.cma.2017.09.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092293201
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1016/j.cma.2017.11.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092728211
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1016/j.cma.2018.04.042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103839869
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1016/j.ijengsci.2014.12.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047501330
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1016/j.jmatprotec.2009.09.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010265113
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1016/j.jmatprotec.2014.06.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001079913
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1016/j.mechmat.2005.06.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012602602
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1098/rsif.2006.0139 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024220420
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1115/1.3109245 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062101516
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1179/1743280411y.0000000014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050173630
206 rdf:type schema:CreativeWork
207 https://www.grid.ac/institutes/grid.47840.3f schema:alternateName University of California, Berkeley
208 schema:name Department of Mechanical Engineering, 6117 Etcheverry Hall, University of California, 94720-1740, Berkeley, CA, USA
209 rdf:type schema:Organization
210 https://www.grid.ac/institutes/grid.9122.8 schema:alternateName University of Hannover
211 schema:name Institute of Continuum Mechanics, Leibniz University of Hannover, Appelstr. 11, 30167, Hannover, Germany
212 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...