Very high order discontinuous Galerkin method in elliptic problems View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-09-19

AUTHORS

Jan Jaśkowiec

ABSTRACT

The paper deals with high-order discontinuous Galerkin (DG) method with the approximation order that exceeds 20 and reaches 100 and even 1000 with respect to one-dimensional case. To achieve such a high order solution, the DG method with finite difference method has to be applied. The basis functions of this method are high-order orthogonal Legendre or Chebyshev polynomials. These polynomials are defined in one-dimensional space (1D), but they can be easily adapted to two-dimensional space (2D) by cross products. There are no nodes in the elements and the degrees of freedom are coefficients of linear combination of basis functions. In this sort of analysis the reference elements are needed, so the transformations of the reference element into the real one are needed as well as the transformations connected with the mesh skeleton. Due to orthogonality of the basis functions, the obtained matrices are sparse even for finite elements with more than thousands degrees of freedom. In consequence, the truncation errors are limited and very high-order analysis can be performed. The paper is illustrated with a set of benchmark examples of 1D and 2D for the elliptic problems. The example presents the great effectiveness of the method that can shorten the length of calculation over hundreds times. More... »

PAGES

1-21

References to SciGraph publications

  • 2012. Mathematical Aspects of Discontinuous Galerkin Methods in NONE
  • 2015-03-06. An analysis of a discontinuous spectral element method for elastic wave propagation in a heterogeneous material in COMPUTATIONAL MECHANICS
  • 2015-10-19. On the Connections Between Discontinuous Galerkin and Flux Reconstruction Schemes: Extension to Curvilinear Meshes in JOURNAL OF SCIENTIFIC COMPUTING
  • 2010-01-28. A comparison of the h-, p-, hp-, and rp-version of the FEM for the solution of the 2D Hertzian contact problem in COMPUTATIONAL MECHANICS
  • 2000. Discontinuous Galerkin Methods, Theory, Computation and Applications in NONE
  • 2014-05-21. Application of hp-Adaptive Finite Element Method to Two-Scale Computation in ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING
  • 2015-08-12. Fast r-adaptivity for multiple queries of heterogeneous stochastic material fields in COMPUTATIONAL MECHANICS
  • 2016-06-24. Simulation of elastic wave propagation in geological media: Intercomparison of three numerical methods in COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS
  • 2015-10-01. Stabilized plane and axisymmetric Lobatto finite element models in COMPUTATIONAL MECHANICS
  • 2015-02-17. Multi-level hp-adaptivity: high-order mesh adaptivity without the difficulties of constraining hanging nodes in COMPUTATIONAL MECHANICS
  • 2015-09-04. A posteriori error estimates for continuous/discontinuous Galerkin approximations of the Kirchhoff–Love buckling problem in COMPUTATIONAL MECHANICS
  • 2009-02-27. A high order hybrid finite element method applied to the solution of electromagnetic wave scattering problems in the time domain in COMPUTATIONAL MECHANICS
  • 2014. Spectral and High Order Methods for Partial Differential Equations - ICOSAHOM 2012, Selected papers from the ICOSAHOM conference, June 25-29, 2012, Gammarth, Tunisia in NONE
  • 2006-08-22. An rp-adaptive finite element method for the deformation theory of plasticity in COMPUTATIONAL MECHANICS
  • 2014-04-19. Finite and spectral cell method for wave propagation in heterogeneous materials in COMPUTATIONAL MECHANICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00466-017-1479-z

    DOI

    http://dx.doi.org/10.1007/s00466-017-1479-z

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1091864766


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0905", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Civil Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0913", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mechanical Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Interdisciplinary Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Institute for Computational Civil Engineering, Faculty of Civil Engineering, Cracow University of Technology, Warszawska 24, 31-155, Krak\u00f3w, Poland", 
              "id": "http://www.grid.ac/institutes/grid.22555.35", 
              "name": [
                "Institute for Computational Civil Engineering, Faculty of Civil Engineering, Cracow University of Technology, Warszawska 24, 31-155, Krak\u00f3w, Poland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ja\u015bkowiec", 
            "givenName": "Jan", 
            "id": "sg:person.012665323172.33", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012665323172.33"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-3-319-01601-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053310861", 
              "https://doi.org/10.1007/978-3-319-01601-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00466-015-1204-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044934374", 
              "https://doi.org/10.1007/s00466-015-1204-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10915-015-0119-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009422806", 
              "https://doi.org/10.1007/s10915-015-0119-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-59721-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052069921", 
              "https://doi.org/10.1007/978-3-642-59721-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00466-009-0377-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004369029", 
              "https://doi.org/10.1007/s00466-009-0377-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00466-015-1190-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039751431", 
              "https://doi.org/10.1007/s00466-015-1190-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00466-015-1137-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010747120", 
              "https://doi.org/10.1007/s00466-015-1137-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00466-014-1019-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045265339", 
              "https://doi.org/10.1007/s00466-014-1019-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00466-014-1118-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020227148", 
              "https://doi.org/10.1007/s00466-014-1118-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-22980-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024006580", 
              "https://doi.org/10.1007/978-3-642-22980-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11831-014-9109-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013632289", 
              "https://doi.org/10.1007/s11831-014-9109-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s0965542516060087", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023773557", 
              "https://doi.org/10.1134/s0965542516060087"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00466-009-0464-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039045613", 
              "https://doi.org/10.1007/s00466-009-0464-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00466-006-0111-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050226015", 
              "https://doi.org/10.1007/s00466-006-0111-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00466-015-1207-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015822160", 
              "https://doi.org/10.1007/s00466-015-1207-5"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-09-19", 
        "datePublishedReg": "2017-09-19", 
        "description": "The paper deals with high-order discontinuous Galerkin (DG) method with the approximation order that exceeds 20 and reaches 100 and even 1000 with respect to one-dimensional case. To achieve such a high order solution, the DG method with finite difference method has to be applied. The basis functions of this method are high-order orthogonal Legendre or Chebyshev polynomials. These polynomials are defined in one-dimensional space (1D), but they can be easily adapted to two-dimensional space (2D) by cross products. There are no nodes in the elements and the degrees of freedom are coefficients of linear combination of basis functions. In this sort of analysis the reference elements are needed, so the transformations of the reference element into the real one are needed as well as the transformations connected with the mesh skeleton. Due to orthogonality of the basis functions, the obtained matrices are sparse even for finite elements with more than thousands degrees of freedom. In consequence, the truncation errors are limited and very high-order analysis can be performed. The paper is illustrated with a set of benchmark examples of 1D and 2D for the elliptic problems. The example presents the great effectiveness of the method that can shorten the length of calculation over hundreds times.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s00466-017-1479-z", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1127263", 
            "issn": [
              "0178-7675", 
              "1432-0924"
            ], 
            "name": "Computational Mechanics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "62"
          }
        ], 
        "keywords": [
          "high-order discontinuous Galerkin method", 
          "discontinuous Galerkin method", 
          "elliptic problems", 
          "Galerkin method", 
          "basis functions", 
          "higher-order solutions", 
          "one-dimensional case", 
          "finite difference method", 
          "one-dimensional space", 
          "two-dimensional space", 
          "approximation order", 
          "order solution", 
          "DG method", 
          "truncation error", 
          "higher-order analysis", 
          "Chebyshev polynomials", 
          "degrees of freedom", 
          "benchmark examples", 
          "difference method", 
          "thousands degrees", 
          "linear combination", 
          "cross product", 
          "finite elements", 
          "mesh skeleton", 
          "length of calculation", 
          "polynomials", 
          "reference element", 
          "space", 
          "Legendre", 
          "problem", 
          "hundreds times", 
          "freedom", 
          "orthogonality", 
          "function", 
          "sort of analysis", 
          "solution", 
          "calculations", 
          "error", 
          "matrix", 
          "transformation", 
          "set", 
          "coefficient", 
          "elements", 
          "nodes", 
          "order", 
          "effectiveness", 
          "respect", 
          "analysis", 
          "degree", 
          "cases", 
          "sort", 
          "length", 
          "time", 
          "combination", 
          "greater effectiveness", 
          "consequences", 
          "products", 
          "skeleton", 
          "method", 
          "example", 
          "paper"
        ], 
        "name": "Very high order discontinuous Galerkin method in elliptic problems", 
        "pagination": "1-21", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1091864766"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00466-017-1479-z"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00466-017-1479-z", 
          "https://app.dimensions.ai/details/publication/pub.1091864766"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-12-01T06:36", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_734.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s00466-017-1479-z"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00466-017-1479-z'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00466-017-1479-z'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00466-017-1479-z'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00466-017-1479-z'


     

    This table displays all metadata directly associated to this object as RDF triples.

    186 TRIPLES      21 PREDICATES      102 URIs      77 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00466-017-1479-z schema:about anzsrc-for:09
    2 anzsrc-for:0905
    3 anzsrc-for:0913
    4 anzsrc-for:0915
    5 schema:author N89f924582e3f466483ccbde5967c9792
    6 schema:citation sg:pub.10.1007/978-3-319-01601-6
    7 sg:pub.10.1007/978-3-642-22980-0
    8 sg:pub.10.1007/978-3-642-59721-3
    9 sg:pub.10.1007/s00466-006-0111-4
    10 sg:pub.10.1007/s00466-009-0377-4
    11 sg:pub.10.1007/s00466-009-0464-6
    12 sg:pub.10.1007/s00466-014-1019-z
    13 sg:pub.10.1007/s00466-014-1118-x
    14 sg:pub.10.1007/s00466-015-1137-2
    15 sg:pub.10.1007/s00466-015-1190-x
    16 sg:pub.10.1007/s00466-015-1204-8
    17 sg:pub.10.1007/s00466-015-1207-5
    18 sg:pub.10.1007/s10915-015-0119-z
    19 sg:pub.10.1007/s11831-014-9109-9
    20 sg:pub.10.1134/s0965542516060087
    21 schema:datePublished 2017-09-19
    22 schema:datePublishedReg 2017-09-19
    23 schema:description The paper deals with high-order discontinuous Galerkin (DG) method with the approximation order that exceeds 20 and reaches 100 and even 1000 with respect to one-dimensional case. To achieve such a high order solution, the DG method with finite difference method has to be applied. The basis functions of this method are high-order orthogonal Legendre or Chebyshev polynomials. These polynomials are defined in one-dimensional space (1D), but they can be easily adapted to two-dimensional space (2D) by cross products. There are no nodes in the elements and the degrees of freedom are coefficients of linear combination of basis functions. In this sort of analysis the reference elements are needed, so the transformations of the reference element into the real one are needed as well as the transformations connected with the mesh skeleton. Due to orthogonality of the basis functions, the obtained matrices are sparse even for finite elements with more than thousands degrees of freedom. In consequence, the truncation errors are limited and very high-order analysis can be performed. The paper is illustrated with a set of benchmark examples of 1D and 2D for the elliptic problems. The example presents the great effectiveness of the method that can shorten the length of calculation over hundreds times.
    24 schema:genre article
    25 schema:isAccessibleForFree true
    26 schema:isPartOf Na0c77b74ec5c4a959ea546816feff219
    27 Nb058dabb78ec467b99fff96b4fda4921
    28 sg:journal.1127263
    29 schema:keywords Chebyshev polynomials
    30 DG method
    31 Galerkin method
    32 Legendre
    33 analysis
    34 approximation order
    35 basis functions
    36 benchmark examples
    37 calculations
    38 cases
    39 coefficient
    40 combination
    41 consequences
    42 cross product
    43 degree
    44 degrees of freedom
    45 difference method
    46 discontinuous Galerkin method
    47 effectiveness
    48 elements
    49 elliptic problems
    50 error
    51 example
    52 finite difference method
    53 finite elements
    54 freedom
    55 function
    56 greater effectiveness
    57 high-order discontinuous Galerkin method
    58 higher-order analysis
    59 higher-order solutions
    60 hundreds times
    61 length
    62 length of calculation
    63 linear combination
    64 matrix
    65 mesh skeleton
    66 method
    67 nodes
    68 one-dimensional case
    69 one-dimensional space
    70 order
    71 order solution
    72 orthogonality
    73 paper
    74 polynomials
    75 problem
    76 products
    77 reference element
    78 respect
    79 set
    80 skeleton
    81 solution
    82 sort
    83 sort of analysis
    84 space
    85 thousands degrees
    86 time
    87 transformation
    88 truncation error
    89 two-dimensional space
    90 schema:name Very high order discontinuous Galerkin method in elliptic problems
    91 schema:pagination 1-21
    92 schema:productId N287dfe2603ec48fb904254f7835f6161
    93 N5145e8ddf6b744a5994b149c05cf2e15
    94 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091864766
    95 https://doi.org/10.1007/s00466-017-1479-z
    96 schema:sdDatePublished 2022-12-01T06:36
    97 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    98 schema:sdPublisher N68c94f80d8594dd09099eea06b29bf96
    99 schema:url https://doi.org/10.1007/s00466-017-1479-z
    100 sgo:license sg:explorer/license/
    101 sgo:sdDataset articles
    102 rdf:type schema:ScholarlyArticle
    103 N287dfe2603ec48fb904254f7835f6161 schema:name dimensions_id
    104 schema:value pub.1091864766
    105 rdf:type schema:PropertyValue
    106 N5145e8ddf6b744a5994b149c05cf2e15 schema:name doi
    107 schema:value 10.1007/s00466-017-1479-z
    108 rdf:type schema:PropertyValue
    109 N68c94f80d8594dd09099eea06b29bf96 schema:name Springer Nature - SN SciGraph project
    110 rdf:type schema:Organization
    111 N89f924582e3f466483ccbde5967c9792 rdf:first sg:person.012665323172.33
    112 rdf:rest rdf:nil
    113 Na0c77b74ec5c4a959ea546816feff219 schema:issueNumber 1
    114 rdf:type schema:PublicationIssue
    115 Nb058dabb78ec467b99fff96b4fda4921 schema:volumeNumber 62
    116 rdf:type schema:PublicationVolume
    117 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    118 schema:name Engineering
    119 rdf:type schema:DefinedTerm
    120 anzsrc-for:0905 schema:inDefinedTermSet anzsrc-for:
    121 schema:name Civil Engineering
    122 rdf:type schema:DefinedTerm
    123 anzsrc-for:0913 schema:inDefinedTermSet anzsrc-for:
    124 schema:name Mechanical Engineering
    125 rdf:type schema:DefinedTerm
    126 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
    127 schema:name Interdisciplinary Engineering
    128 rdf:type schema:DefinedTerm
    129 sg:journal.1127263 schema:issn 0178-7675
    130 1432-0924
    131 schema:name Computational Mechanics
    132 schema:publisher Springer Nature
    133 rdf:type schema:Periodical
    134 sg:person.012665323172.33 schema:affiliation grid-institutes:grid.22555.35
    135 schema:familyName Jaśkowiec
    136 schema:givenName Jan
    137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012665323172.33
    138 rdf:type schema:Person
    139 sg:pub.10.1007/978-3-319-01601-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053310861
    140 https://doi.org/10.1007/978-3-319-01601-6
    141 rdf:type schema:CreativeWork
    142 sg:pub.10.1007/978-3-642-22980-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024006580
    143 https://doi.org/10.1007/978-3-642-22980-0
    144 rdf:type schema:CreativeWork
    145 sg:pub.10.1007/978-3-642-59721-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052069921
    146 https://doi.org/10.1007/978-3-642-59721-3
    147 rdf:type schema:CreativeWork
    148 sg:pub.10.1007/s00466-006-0111-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050226015
    149 https://doi.org/10.1007/s00466-006-0111-4
    150 rdf:type schema:CreativeWork
    151 sg:pub.10.1007/s00466-009-0377-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004369029
    152 https://doi.org/10.1007/s00466-009-0377-4
    153 rdf:type schema:CreativeWork
    154 sg:pub.10.1007/s00466-009-0464-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039045613
    155 https://doi.org/10.1007/s00466-009-0464-6
    156 rdf:type schema:CreativeWork
    157 sg:pub.10.1007/s00466-014-1019-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1045265339
    158 https://doi.org/10.1007/s00466-014-1019-z
    159 rdf:type schema:CreativeWork
    160 sg:pub.10.1007/s00466-014-1118-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1020227148
    161 https://doi.org/10.1007/s00466-014-1118-x
    162 rdf:type schema:CreativeWork
    163 sg:pub.10.1007/s00466-015-1137-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010747120
    164 https://doi.org/10.1007/s00466-015-1137-2
    165 rdf:type schema:CreativeWork
    166 sg:pub.10.1007/s00466-015-1190-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1039751431
    167 https://doi.org/10.1007/s00466-015-1190-x
    168 rdf:type schema:CreativeWork
    169 sg:pub.10.1007/s00466-015-1204-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044934374
    170 https://doi.org/10.1007/s00466-015-1204-8
    171 rdf:type schema:CreativeWork
    172 sg:pub.10.1007/s00466-015-1207-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015822160
    173 https://doi.org/10.1007/s00466-015-1207-5
    174 rdf:type schema:CreativeWork
    175 sg:pub.10.1007/s10915-015-0119-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1009422806
    176 https://doi.org/10.1007/s10915-015-0119-z
    177 rdf:type schema:CreativeWork
    178 sg:pub.10.1007/s11831-014-9109-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013632289
    179 https://doi.org/10.1007/s11831-014-9109-9
    180 rdf:type schema:CreativeWork
    181 sg:pub.10.1134/s0965542516060087 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023773557
    182 https://doi.org/10.1134/s0965542516060087
    183 rdf:type schema:CreativeWork
    184 grid-institutes:grid.22555.35 schema:alternateName Institute for Computational Civil Engineering, Faculty of Civil Engineering, Cracow University of Technology, Warszawska 24, 31-155, Kraków, Poland
    185 schema:name Institute for Computational Civil Engineering, Faculty of Civil Engineering, Cracow University of Technology, Warszawska 24, 31-155, Kraków, Poland
    186 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...