Using virtual reality simulation to assess competence in video-assisted thoracoscopic surgery (VATS) lobectomy View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-09-21

AUTHORS

Katrine Jensen, Flemming Bjerrum, Henrik Jessen Hansen, René Horsleben Petersen, Jesper Holst Pedersen, Lars Konge

ABSTRACT

BackgroundThe societies of thoracic surgery are working to incorporate simulation and competency-based assessment into specialty training. One challenge is the development of a simulation-based test, which can be used as an assessment tool. The study objective was to establish validity evidence for a virtual reality simulator test of a video-assisted thoracoscopic surgery (VATS) lobectomy of a right upper lobe.MethodsParticipants with varying experience in VATS lobectomy were included. They were familiarized with a virtual reality simulator (LapSim®) and introduced to the steps of the procedure for a VATS right upper lobe lobectomy. The participants performed two VATS lobectomies on the simulator with a 5-min break between attempts. Nineteen pre-defined simulator metrics were recorded.ResultsFifty-three participants from nine different countries were included. High internal consistency was found for the metrics with Cronbach’s alpha coefficient for standardized items of 0.91. Significant test–retest reliability was found for 15 of the metrics (p-values <0.05). Significant correlations between the metrics and the participants VATS lobectomy experience were identified for seven metrics (p-values <0.001), and 10 metrics showed significant differences between novices (0 VATS lobectomies performed) and experienced surgeons (>50 VATS lobectomies performed). A pass/fail level defined as approximately one standard deviation from the mean metric scores for experienced surgeons passed none of the novices (0 % false positives) and failed four of the experienced surgeons (29 % false negatives).ConclusionThis study is the first to establish validity evidence for a VATS right upper lobe lobectomy virtual reality simulator test. Several simulator metrics demonstrated significant differences between novices and experienced surgeons and pass/fail criteria for the test were set with acceptable consequences. This test can be used as a first step in assessing thoracic surgery trainees’ VATS lobectomy competency. More... »

PAGES

2520-2528

References to SciGraph publications

  • 2015-06-20. Validity evidence for the Fundamentals of Laparoscopic Surgery (FLS) program as an assessment tool: a systematic review in SURGICAL ENDOSCOPY
  • 2007-12-03. VR to OR: A Review of the Evidence that Virtual Reality Simulation Improves Operating Room Performance in WORLD JOURNAL OF SURGERY
  • 2014-01-18. Construct validity of individual and summary performance metrics associated with a computer-based laparoscopic simulator in SURGICAL ENDOSCOPY
  • 2012-09-07. Procedural virtual reality simulation in minimally invasive surgery in SURGICAL ENDOSCOPY
  • 2006-07-03. Objective assessment of gynecologic laparoscopic skills using the LapSimGyn virtual reality simulator in SURGICAL ENDOSCOPY
  • 2001-10. Skill transfer from virtual reality to a real laparoscopic task in SURGICAL ENDOSCOPY
  • 2007-02-09. Construct validity of the LapSim: Can the LapSim virtual reality simulator distinguish between novices and experts? in SURGICAL ENDOSCOPY
  • 2012-04-05. A head-to-head comparison between virtual reality and physical reality simulation training for basic skills acquisition in SURGICAL ENDOSCOPY
  • 2006-09-06. Challenges to the development of complex virtual reality surgical simulations in SURGICAL ENDOSCOPY
  • 2005-07-28. Objective assessment of laparoscopic skills using a virtual reality stimulator in SURGICAL ENDOSCOPY
  • 2007-06-12. Objective Assessment of Technical Performance in WORLD JOURNAL OF SURGERY
  • 2010-10-07. Video-assisted thoracoscopic surgery (VATS) lobectomy using a standardized anterior approach in SURGICAL ENDOSCOPY
  • 2005-07-28. The Eindhoven laparoscopic cholecystectomy training course—improving operating room performance using virtual reality training: results from the first E.A.E.S. accredited virtual reality trainings curriculum in SURGICAL ENDOSCOPY
  • 2014-11-27. Development and validation of a theoretical test of proficiency for video-assisted thoracoscopic surgery (VATS) lobectomy in SURGICAL ENDOSCOPY
  • 2016-04-11. Non-technical skills in minimally invasive surgery teams: a systematic review in SURGICAL ENDOSCOPY
  • 2006-02-27. The MISTELS program to measure technical skill in laparoscopic surgery in SURGICAL ENDOSCOPY
  • 2014-01-18. Simulation-based training for thoracoscopic lobectomy: a randomized controlled trial in SURGICAL ENDOSCOPY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00464-016-5254-6

    DOI

    http://dx.doi.org/10.1007/s00464-016-5254-6

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1013737790

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/27655381


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Clinical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Adult", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Clinical Competence", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Competency-Based Education", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Computer Simulation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Educational Measurement", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Female", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Lung Neoplasms", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Male", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Pneumonectomy", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Reproducibility of Results", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Simulation Training", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Surgery, Computer-Assisted", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Thoracic Surgery, Video-Assisted", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Virtual Reality", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Copenhagen Academy for Medical Education and Simulation (CAMES), Section\u00a05404, University of Copenhagen and Capital Region, Rigshospitalet, Blegdamsvej 9, 2100 K\u00f8benhavn \u00d8, Copenhagen, Denmark", 
              "id": "http://www.grid.ac/institutes/grid.475435.4", 
              "name": [
                "Department of Cardiothoracic Surgery, Sect.\u00a02152, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark", 
                "Copenhagen Academy for Medical Education and Simulation (CAMES), Section\u00a05404, University of Copenhagen and Capital Region, Rigshospitalet, Blegdamsvej 9, 2100 K\u00f8benhavn \u00d8, Copenhagen, Denmark"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jensen", 
            "givenName": "Katrine", 
            "id": "sg:person.01331555432.10", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01331555432.10"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "JMC Simulation Unit, The Juliane Marie Centre, Section\u00a04704, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark", 
              "id": "http://www.grid.ac/institutes/grid.475435.4", 
              "name": [
                "JMC Simulation Unit, The Juliane Marie Centre, Section\u00a04704, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bjerrum", 
            "givenName": "Flemming", 
            "id": "sg:person.0575413721.98", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0575413721.98"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Cardiothoracic Surgery, Sect.\u00a02152, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark", 
              "id": "http://www.grid.ac/institutes/grid.475435.4", 
              "name": [
                "Department of Cardiothoracic Surgery, Sect.\u00a02152, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hansen", 
            "givenName": "Henrik Jessen", 
            "id": "sg:person.011337537517.78", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011337537517.78"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Cardiothoracic Surgery, Sect.\u00a02152, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark", 
              "id": "http://www.grid.ac/institutes/grid.475435.4", 
              "name": [
                "Department of Cardiothoracic Surgery, Sect.\u00a02152, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Petersen", 
            "givenName": "Ren\u00e9 Horsleben", 
            "id": "sg:person.0663063133.12", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0663063133.12"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Cardiothoracic Surgery, Sect.\u00a02152, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark", 
              "id": "http://www.grid.ac/institutes/grid.475435.4", 
              "name": [
                "Department of Cardiothoracic Surgery, Sect.\u00a02152, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pedersen", 
            "givenName": "Jesper Holst", 
            "id": "sg:person.07725433554.11", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07725433554.11"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Copenhagen Academy for Medical Education and Simulation (CAMES), Section\u00a05404, University of Copenhagen and Capital Region, Rigshospitalet, Blegdamsvej 9, 2100 K\u00f8benhavn \u00d8, Copenhagen, Denmark", 
              "id": "http://www.grid.ac/institutes/grid.475435.4", 
              "name": [
                "Copenhagen Academy for Medical Education and Simulation (CAMES), Section\u00a05404, University of Copenhagen and Capital Region, Rigshospitalet, Blegdamsvej 9, 2100 K\u00f8benhavn \u00d8, Copenhagen, Denmark"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Konge", 
            "givenName": "Lars", 
            "id": "sg:person.01212370323.12", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01212370323.12"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s00464-013-3392-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053274442", 
              "https://doi.org/10.1007/s00464-013-3392-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00464-013-3414-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000527917", 
              "https://doi.org/10.1007/s00464-013-3414-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00464-004-2154-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011441731", 
              "https://doi.org/10.1007/s00464-004-2154-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00464-005-3008-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052834226", 
              "https://doi.org/10.1007/s00464-005-3008-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00464-014-3975-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009065272", 
              "https://doi.org/10.1007/s00464-014-3975-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00268-007-9307-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021286063", 
              "https://doi.org/10.1007/s00268-007-9307-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00464-012-2230-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042085650", 
              "https://doi.org/10.1007/s00464-012-2230-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00464-015-4233-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041985048", 
              "https://doi.org/10.1007/s00464-015-4233-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00464-006-0107-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024397923", 
              "https://doi.org/10.1007/s00464-006-0107-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00464-016-4890-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030875072", 
              "https://doi.org/10.1007/s00464-016-4890-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00464-005-0745-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027059328", 
              "https://doi.org/10.1007/s00464-005-0745-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00464-010-1355-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016817107", 
              "https://doi.org/10.1007/s00464-010-1355-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00464-012-2503-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009440626", 
              "https://doi.org/10.1007/s00464-012-2503-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s004640000233", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008135316", 
              "https://doi.org/10.1007/s004640000233"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00464-006-9188-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004513678", 
              "https://doi.org/10.1007/s00464-006-9188-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00464-004-2240-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031569534", 
              "https://doi.org/10.1007/s00464-004-2240-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00268-007-9143-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019403679", 
              "https://doi.org/10.1007/s00268-007-9143-y"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2016-09-21", 
        "datePublishedReg": "2016-09-21", 
        "description": "BackgroundThe societies of thoracic surgery are working to incorporate simulation and competency-based assessment into specialty training. One challenge is the development of a simulation-based test, which can be used as an assessment tool. The study objective was to establish validity evidence for a virtual reality simulator test of a video-assisted thoracoscopic surgery (VATS) lobectomy of a right upper lobe.MethodsParticipants with varying experience in VATS lobectomy were included. They were familiarized with a virtual reality simulator (LapSim\u00ae) and introduced to the steps of the procedure for a VATS right upper lobe lobectomy. The participants performed two VATS lobectomies on the simulator with a 5-min break between attempts. Nineteen pre-defined simulator metrics were recorded.ResultsFifty-three participants from nine different countries were included. High internal consistency was found for the metrics with Cronbach\u2019s alpha coefficient for standardized items of 0.91. Significant test\u2013retest reliability was found for 15 of the metrics (p-values <0.05). Significant correlations between the metrics and the participants VATS lobectomy experience were identified for seven metrics (p-values <0.001), and 10 metrics showed significant differences between novices (0 VATS lobectomies performed) and experienced surgeons (>50 VATS lobectomies performed). A pass/fail level defined as approximately one standard deviation from the mean metric scores for experienced surgeons passed none of the novices (0\u00a0% false positives) and failed four of the experienced surgeons (29\u00a0% false negatives).ConclusionThis study is the first to establish validity evidence for a VATS right upper lobe lobectomy virtual reality simulator test. Several simulator metrics demonstrated significant differences between novices and experienced surgeons and pass/fail criteria for the test were set with acceptable consequences. This test can be used as a first step in assessing thoracic surgery trainees\u2019 VATS lobectomy competency.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s00464-016-5254-6", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1098220", 
            "issn": [
              "0930-2794", 
              "1432-2218"
            ], 
            "name": "Surgical Endoscopy", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "6", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "31"
          }
        ], 
        "keywords": [
          "video-assisted thoracoscopic surgery lobectomy", 
          "thoracoscopic surgery lobectomy", 
          "experienced surgeons", 
          "simulator metrics", 
          "right upper lobe lobectomy", 
          "right upper lobe", 
          "upper lobe lobectomy", 
          "significant differences", 
          "alpha coefficient", 
          "significant test-retest reliability", 
          "upper lobe", 
          "VATS lobectomy", 
          "test-retest reliability", 
          "thoracic surgery", 
          "VATS lobectomy", 
          "thoracic surgery trainees", 
          "Cronbach's alpha coefficient", 
          "lobectomy", 
          "ResultsFifty-three participants", 
          "ConclusionThis study", 
          "high internal consistency", 
          "surgeons", 
          "surgery trainees", 
          "study objective", 
          "significant correlation", 
          "specialty training", 
          "internal consistency", 
          "virtual reality simulator", 
          "assessment tool", 
          "standardized items", 
          "validity evidence", 
          "BackgroundThe Society", 
          "reality simulator", 
          "competency-based assessment", 
          "participants", 
          "surgery", 
          "simulator tests", 
          "MethodsParticipants", 
          "evidence", 
          "test", 
          "lobe", 
          "differences", 
          "scores", 
          "experience", 
          "pass/", 
          "trainees", 
          "assessment", 
          "different countries", 
          "virtual reality simulation", 
          "levels", 
          "criteria", 
          "acceptable consequences", 
          "study", 
          "training", 
          "correlation", 
          "procedure", 
          "standard deviation", 
          "novices", 
          "objective", 
          "simulation-based test", 
          "items", 
          "reality simulation", 
          "consequences", 
          "development", 
          "countries", 
          "competencies", 
          "competence", 
          "first step", 
          "consistency", 
          "challenges", 
          "attempt", 
          "tool", 
          "metric scores", 
          "breaks", 
          "step", 
          "society", 
          "reliability", 
          "deviation", 
          "metrics", 
          "simulator", 
          "coefficient", 
          "simulations"
        ], 
        "name": "Using virtual reality simulation to assess competence in video-assisted thoracoscopic surgery (VATS) lobectomy", 
        "pagination": "2520-2528", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1013737790"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00464-016-5254-6"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "27655381"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00464-016-5254-6", 
          "https://app.dimensions.ai/details/publication/pub.1013737790"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-12-01T06:34", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_700.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s00464-016-5254-6"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00464-016-5254-6'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00464-016-5254-6'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00464-016-5254-6'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00464-016-5254-6'


     

    This table displays all metadata directly associated to this object as RDF triples.

    309 TRIPLES      21 PREDICATES      138 URIs      113 LITERALS      22 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00464-016-5254-6 schema:about N05683165eb9f4c69a06c6e1040b00051
    2 N2147a061866d4c89be57aaa7b357f6d2
    3 N36ee599d28c247c8901c781117ce34e1
    4 N396528875e7f4d25b0c4cd432b53ecde
    5 N3d42e2cc5aba4060834095635b3175f0
    6 N42e2f8654ddd4ba7b022e59e8b019459
    7 N6d5edb1c9bc641baa75cd8bf1ae5079f
    8 N73da8f749cd6413ab19d202bb520b30a
    9 N754320dca351441385fc3df1492c6968
    10 N980458874ab143e9b954773c9dc65e04
    11 Na1daa7cfa1a941f1944a6bc5c95169ef
    12 Na5e23fab843441279ee0a29db97a4d08
    13 Nd60cd261110741c9a50df1ec76abb67b
    14 Ndc53b0d99142425aba6956f5a0657233
    15 Nfc58711aba814e11816e887bfcf59c7b
    16 anzsrc-for:11
    17 anzsrc-for:1103
    18 schema:author Nbfa5909b5dd644b0a08a858861403e8b
    19 schema:citation sg:pub.10.1007/s00268-007-9143-y
    20 sg:pub.10.1007/s00268-007-9307-9
    21 sg:pub.10.1007/s00464-004-2154-y
    22 sg:pub.10.1007/s00464-004-2240-1
    23 sg:pub.10.1007/s00464-005-0745-x
    24 sg:pub.10.1007/s00464-005-3008-y
    25 sg:pub.10.1007/s00464-006-0107-3
    26 sg:pub.10.1007/s00464-006-9188-2
    27 sg:pub.10.1007/s00464-010-1355-9
    28 sg:pub.10.1007/s00464-012-2230-7
    29 sg:pub.10.1007/s00464-012-2503-1
    30 sg:pub.10.1007/s00464-013-3392-7
    31 sg:pub.10.1007/s00464-013-3414-5
    32 sg:pub.10.1007/s00464-014-3975-y
    33 sg:pub.10.1007/s00464-015-4233-7
    34 sg:pub.10.1007/s00464-016-4890-1
    35 sg:pub.10.1007/s004640000233
    36 schema:datePublished 2016-09-21
    37 schema:datePublishedReg 2016-09-21
    38 schema:description BackgroundThe societies of thoracic surgery are working to incorporate simulation and competency-based assessment into specialty training. One challenge is the development of a simulation-based test, which can be used as an assessment tool. The study objective was to establish validity evidence for a virtual reality simulator test of a video-assisted thoracoscopic surgery (VATS) lobectomy of a right upper lobe.MethodsParticipants with varying experience in VATS lobectomy were included. They were familiarized with a virtual reality simulator (LapSim®) and introduced to the steps of the procedure for a VATS right upper lobe lobectomy. The participants performed two VATS lobectomies on the simulator with a 5-min break between attempts. Nineteen pre-defined simulator metrics were recorded.ResultsFifty-three participants from nine different countries were included. High internal consistency was found for the metrics with Cronbach’s alpha coefficient for standardized items of 0.91. Significant test–retest reliability was found for 15 of the metrics (p-values <0.05). Significant correlations between the metrics and the participants VATS lobectomy experience were identified for seven metrics (p-values <0.001), and 10 metrics showed significant differences between novices (0 VATS lobectomies performed) and experienced surgeons (>50 VATS lobectomies performed). A pass/fail level defined as approximately one standard deviation from the mean metric scores for experienced surgeons passed none of the novices (0 % false positives) and failed four of the experienced surgeons (29 % false negatives).ConclusionThis study is the first to establish validity evidence for a VATS right upper lobe lobectomy virtual reality simulator test. Several simulator metrics demonstrated significant differences between novices and experienced surgeons and pass/fail criteria for the test were set with acceptable consequences. This test can be used as a first step in assessing thoracic surgery trainees’ VATS lobectomy competency.
    39 schema:genre article
    40 schema:isAccessibleForFree false
    41 schema:isPartOf N9de7f9bd531249cb9d582a7abed60418
    42 Na4b14f736a8d47bd9505e4a0766c9512
    43 sg:journal.1098220
    44 schema:keywords BackgroundThe Society
    45 ConclusionThis study
    46 Cronbach's alpha coefficient
    47 MethodsParticipants
    48 ResultsFifty-three participants
    49 VATS lobectomy
    50 acceptable consequences
    51 alpha coefficient
    52 assessment
    53 assessment tool
    54 attempt
    55 breaks
    56 challenges
    57 coefficient
    58 competence
    59 competencies
    60 competency-based assessment
    61 consequences
    62 consistency
    63 correlation
    64 countries
    65 criteria
    66 development
    67 deviation
    68 differences
    69 different countries
    70 evidence
    71 experience
    72 experienced surgeons
    73 first step
    74 high internal consistency
    75 internal consistency
    76 items
    77 levels
    78 lobe
    79 lobectomy
    80 metric scores
    81 metrics
    82 novices
    83 objective
    84 participants
    85 pass/
    86 procedure
    87 reality simulation
    88 reality simulator
    89 reliability
    90 right upper lobe
    91 right upper lobe lobectomy
    92 scores
    93 significant correlation
    94 significant differences
    95 significant test-retest reliability
    96 simulation-based test
    97 simulations
    98 simulator
    99 simulator metrics
    100 simulator tests
    101 society
    102 specialty training
    103 standard deviation
    104 standardized items
    105 step
    106 study
    107 study objective
    108 surgeons
    109 surgery
    110 surgery trainees
    111 test
    112 test-retest reliability
    113 thoracic surgery
    114 thoracic surgery trainees
    115 thoracoscopic surgery lobectomy
    116 tool
    117 trainees
    118 training
    119 upper lobe
    120 upper lobe lobectomy
    121 validity evidence
    122 video-assisted thoracoscopic surgery lobectomy
    123 virtual reality simulation
    124 virtual reality simulator
    125 schema:name Using virtual reality simulation to assess competence in video-assisted thoracoscopic surgery (VATS) lobectomy
    126 schema:pagination 2520-2528
    127 schema:productId N279042deb2bb496d937125a3d8d7d819
    128 Nd48430649a16441e8b3483bafba09d3e
    129 Nee3b460a930e4a73a2b775d52b84529c
    130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013737790
    131 https://doi.org/10.1007/s00464-016-5254-6
    132 schema:sdDatePublished 2022-12-01T06:34
    133 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    134 schema:sdPublisher N4f22726ed5294e4c9a15c89fa368090f
    135 schema:url https://doi.org/10.1007/s00464-016-5254-6
    136 sgo:license sg:explorer/license/
    137 sgo:sdDataset articles
    138 rdf:type schema:ScholarlyArticle
    139 N05683165eb9f4c69a06c6e1040b00051 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    140 schema:name Pneumonectomy
    141 rdf:type schema:DefinedTerm
    142 N2147a061866d4c89be57aaa7b357f6d2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    143 schema:name Female
    144 rdf:type schema:DefinedTerm
    145 N279042deb2bb496d937125a3d8d7d819 schema:name pubmed_id
    146 schema:value 27655381
    147 rdf:type schema:PropertyValue
    148 N32c93947e5a64e499e65777f81bd4767 rdf:first sg:person.0663063133.12
    149 rdf:rest N9e62bb6d94114999a43ed721644b5577
    150 N36ee599d28c247c8901c781117ce34e1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    151 schema:name Humans
    152 rdf:type schema:DefinedTerm
    153 N396528875e7f4d25b0c4cd432b53ecde schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    154 schema:name Simulation Training
    155 rdf:type schema:DefinedTerm
    156 N3d42e2cc5aba4060834095635b3175f0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    157 schema:name Surgery, Computer-Assisted
    158 rdf:type schema:DefinedTerm
    159 N42e2f8654ddd4ba7b022e59e8b019459 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    160 schema:name Clinical Competence
    161 rdf:type schema:DefinedTerm
    162 N4f22726ed5294e4c9a15c89fa368090f schema:name Springer Nature - SN SciGraph project
    163 rdf:type schema:Organization
    164 N53f11f88fefe481ab7e7834297d67d8e rdf:first sg:person.0575413721.98
    165 rdf:rest Nf88e321335044052935fcef5a432e206
    166 N56c96633ddfc455fa5d5d8731ad4230a rdf:first sg:person.01212370323.12
    167 rdf:rest rdf:nil
    168 N6d5edb1c9bc641baa75cd8bf1ae5079f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    169 schema:name Educational Measurement
    170 rdf:type schema:DefinedTerm
    171 N73da8f749cd6413ab19d202bb520b30a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    172 schema:name Computer Simulation
    173 rdf:type schema:DefinedTerm
    174 N754320dca351441385fc3df1492c6968 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    175 schema:name Reproducibility of Results
    176 rdf:type schema:DefinedTerm
    177 N980458874ab143e9b954773c9dc65e04 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    178 schema:name Competency-Based Education
    179 rdf:type schema:DefinedTerm
    180 N9de7f9bd531249cb9d582a7abed60418 schema:issueNumber 6
    181 rdf:type schema:PublicationIssue
    182 N9e62bb6d94114999a43ed721644b5577 rdf:first sg:person.07725433554.11
    183 rdf:rest N56c96633ddfc455fa5d5d8731ad4230a
    184 Na1daa7cfa1a941f1944a6bc5c95169ef schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    185 schema:name Virtual Reality
    186 rdf:type schema:DefinedTerm
    187 Na4b14f736a8d47bd9505e4a0766c9512 schema:volumeNumber 31
    188 rdf:type schema:PublicationVolume
    189 Na5e23fab843441279ee0a29db97a4d08 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    190 schema:name Lung Neoplasms
    191 rdf:type schema:DefinedTerm
    192 Nbfa5909b5dd644b0a08a858861403e8b rdf:first sg:person.01331555432.10
    193 rdf:rest N53f11f88fefe481ab7e7834297d67d8e
    194 Nd48430649a16441e8b3483bafba09d3e schema:name dimensions_id
    195 schema:value pub.1013737790
    196 rdf:type schema:PropertyValue
    197 Nd60cd261110741c9a50df1ec76abb67b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    198 schema:name Male
    199 rdf:type schema:DefinedTerm
    200 Ndc53b0d99142425aba6956f5a0657233 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    201 schema:name Adult
    202 rdf:type schema:DefinedTerm
    203 Nee3b460a930e4a73a2b775d52b84529c schema:name doi
    204 schema:value 10.1007/s00464-016-5254-6
    205 rdf:type schema:PropertyValue
    206 Nf88e321335044052935fcef5a432e206 rdf:first sg:person.011337537517.78
    207 rdf:rest N32c93947e5a64e499e65777f81bd4767
    208 Nfc58711aba814e11816e887bfcf59c7b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    209 schema:name Thoracic Surgery, Video-Assisted
    210 rdf:type schema:DefinedTerm
    211 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    212 schema:name Medical and Health Sciences
    213 rdf:type schema:DefinedTerm
    214 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
    215 schema:name Clinical Sciences
    216 rdf:type schema:DefinedTerm
    217 sg:journal.1098220 schema:issn 0930-2794
    218 1432-2218
    219 schema:name Surgical Endoscopy
    220 schema:publisher Springer Nature
    221 rdf:type schema:Periodical
    222 sg:person.011337537517.78 schema:affiliation grid-institutes:grid.475435.4
    223 schema:familyName Hansen
    224 schema:givenName Henrik Jessen
    225 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011337537517.78
    226 rdf:type schema:Person
    227 sg:person.01212370323.12 schema:affiliation grid-institutes:grid.475435.4
    228 schema:familyName Konge
    229 schema:givenName Lars
    230 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01212370323.12
    231 rdf:type schema:Person
    232 sg:person.01331555432.10 schema:affiliation grid-institutes:grid.475435.4
    233 schema:familyName Jensen
    234 schema:givenName Katrine
    235 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01331555432.10
    236 rdf:type schema:Person
    237 sg:person.0575413721.98 schema:affiliation grid-institutes:grid.475435.4
    238 schema:familyName Bjerrum
    239 schema:givenName Flemming
    240 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0575413721.98
    241 rdf:type schema:Person
    242 sg:person.0663063133.12 schema:affiliation grid-institutes:grid.475435.4
    243 schema:familyName Petersen
    244 schema:givenName René Horsleben
    245 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0663063133.12
    246 rdf:type schema:Person
    247 sg:person.07725433554.11 schema:affiliation grid-institutes:grid.475435.4
    248 schema:familyName Pedersen
    249 schema:givenName Jesper Holst
    250 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07725433554.11
    251 rdf:type schema:Person
    252 sg:pub.10.1007/s00268-007-9143-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1019403679
    253 https://doi.org/10.1007/s00268-007-9143-y
    254 rdf:type schema:CreativeWork
    255 sg:pub.10.1007/s00268-007-9307-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021286063
    256 https://doi.org/10.1007/s00268-007-9307-9
    257 rdf:type schema:CreativeWork
    258 sg:pub.10.1007/s00464-004-2154-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1011441731
    259 https://doi.org/10.1007/s00464-004-2154-y
    260 rdf:type schema:CreativeWork
    261 sg:pub.10.1007/s00464-004-2240-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031569534
    262 https://doi.org/10.1007/s00464-004-2240-1
    263 rdf:type schema:CreativeWork
    264 sg:pub.10.1007/s00464-005-0745-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1027059328
    265 https://doi.org/10.1007/s00464-005-0745-x
    266 rdf:type schema:CreativeWork
    267 sg:pub.10.1007/s00464-005-3008-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1052834226
    268 https://doi.org/10.1007/s00464-005-3008-y
    269 rdf:type schema:CreativeWork
    270 sg:pub.10.1007/s00464-006-0107-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024397923
    271 https://doi.org/10.1007/s00464-006-0107-3
    272 rdf:type schema:CreativeWork
    273 sg:pub.10.1007/s00464-006-9188-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004513678
    274 https://doi.org/10.1007/s00464-006-9188-2
    275 rdf:type schema:CreativeWork
    276 sg:pub.10.1007/s00464-010-1355-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016817107
    277 https://doi.org/10.1007/s00464-010-1355-9
    278 rdf:type schema:CreativeWork
    279 sg:pub.10.1007/s00464-012-2230-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042085650
    280 https://doi.org/10.1007/s00464-012-2230-7
    281 rdf:type schema:CreativeWork
    282 sg:pub.10.1007/s00464-012-2503-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009440626
    283 https://doi.org/10.1007/s00464-012-2503-1
    284 rdf:type schema:CreativeWork
    285 sg:pub.10.1007/s00464-013-3392-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053274442
    286 https://doi.org/10.1007/s00464-013-3392-7
    287 rdf:type schema:CreativeWork
    288 sg:pub.10.1007/s00464-013-3414-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000527917
    289 https://doi.org/10.1007/s00464-013-3414-5
    290 rdf:type schema:CreativeWork
    291 sg:pub.10.1007/s00464-014-3975-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1009065272
    292 https://doi.org/10.1007/s00464-014-3975-y
    293 rdf:type schema:CreativeWork
    294 sg:pub.10.1007/s00464-015-4233-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041985048
    295 https://doi.org/10.1007/s00464-015-4233-7
    296 rdf:type schema:CreativeWork
    297 sg:pub.10.1007/s00464-016-4890-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030875072
    298 https://doi.org/10.1007/s00464-016-4890-1
    299 rdf:type schema:CreativeWork
    300 sg:pub.10.1007/s004640000233 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008135316
    301 https://doi.org/10.1007/s004640000233
    302 rdf:type schema:CreativeWork
    303 grid-institutes:grid.475435.4 schema:alternateName Copenhagen Academy for Medical Education and Simulation (CAMES), Section 5404, University of Copenhagen and Capital Region, Rigshospitalet, Blegdamsvej 9, 2100 København Ø, Copenhagen, Denmark
    304 Department of Cardiothoracic Surgery, Sect. 2152, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark
    305 JMC Simulation Unit, The Juliane Marie Centre, Section 4704, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark
    306 schema:name Copenhagen Academy for Medical Education and Simulation (CAMES), Section 5404, University of Copenhagen and Capital Region, Rigshospitalet, Blegdamsvej 9, 2100 København Ø, Copenhagen, Denmark
    307 Department of Cardiothoracic Surgery, Sect. 2152, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark
    308 JMC Simulation Unit, The Juliane Marie Centre, Section 4704, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark
    309 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...