Kinect technology for hand tracking control of surgical robots: technical and surgical skill comparison to current robotic masters View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2014-06

AUTHORS

Yonjae Kim, Simon Leonard, Azad Shademan, Axel Krieger, Peter C. W. Kim

ABSTRACT

BACKGROUND: Current surgical robots are controlled by a mechanical master located away from the patient, tracking surgeon's hands by wire and pulleys or mechanical linkage. Contactless hand tracking for surgical robot control is an attractive alternative, because it can be executed with minimal footprint at the patient's bedside without impairing sterility, while eliminating current disassociation between surgeon and patient. We compared technical and technologic feasibility of contactless hand tracking to the current clinical standard master controllers. METHODS: A hand-tracking system (Kinect™-based 3Gear), a wire-based mechanical master (Mantis Duo), and a clinical mechanical linkage master (da Vinci) were evaluated for technical parameters with strong clinical relevance: system latency, static noise, robot slave tremor, and controller range. Five experienced surgeons performed a skill comparison study, evaluating the three different master controllers for efficiency and accuracy in peg transfer and pointing tasks. RESULTS: da Vinci had the lowest latency of 89 ms, followed by Mantis with 374 ms and 3Gear with 576 ms. Mantis and da Vinci produced zero static error. 3Gear produced average static error of 0.49 mm. The tremor of the robot used by the 3Gear and Mantis system had a radius of 1.7 mm compared with 0.5 mm for da Vinci. The three master controllers all had similar range. The surgeons took 1.98 times longer to complete the peg transfer task with the 3Gear system compared with Mantis, and 2.72 times longer with Mantis compared with da Vinci (p value 2.1e-9). For the pointer task, surgeons were most accurate with da Vinci with average error of 0.72 mm compared with Mantis's 1.61 mm and 3Gear's 2.41 mm (p value 0.00078). CONCLUSIONS: Contactless hand-tracking technology as a surgical master can execute simple surgical tasks. Whereas traditional master controllers outperformed, given that contactless hand-tracking is a first-generation technology, clinical potential is promising and could become a reality with some technical improvements. More... »

PAGES

1993-2000

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00464-013-3383-8

DOI

http://dx.doi.org/10.1007/s00464-013-3383-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1048960652

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/24380997


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Equipment Design", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Feasibility Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reaction Time", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Robotics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Surgery, Computer-Assisted", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Children\u2019s National Health System", 
          "id": "https://www.grid.ac/institutes/grid.239560.b", 
          "name": [
            "Sheikh Zayed Institute for Pediatric Surgical Innovation, Children\u2019s National Medical Center, Room M7777, 111 Michigan Avenue, NW, 20010, Washington, DC, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Yonjae", 
        "id": "sg:person.01031076070.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01031076070.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Children\u2019s National Health System", 
          "id": "https://www.grid.ac/institutes/grid.239560.b", 
          "name": [
            "Sheikh Zayed Institute for Pediatric Surgical Innovation, Children\u2019s National Medical Center, Room M7777, 111 Michigan Avenue, NW, 20010, Washington, DC, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Leonard", 
        "givenName": "Simon", 
        "id": "sg:person.0723761603.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0723761603.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Children\u2019s National Health System", 
          "id": "https://www.grid.ac/institutes/grid.239560.b", 
          "name": [
            "Sheikh Zayed Institute for Pediatric Surgical Innovation, Children\u2019s National Medical Center, Room M7777, 111 Michigan Avenue, NW, 20010, Washington, DC, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shademan", 
        "givenName": "Azad", 
        "id": "sg:person.011125501141.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011125501141.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Children\u2019s National Health System", 
          "id": "https://www.grid.ac/institutes/grid.239560.b", 
          "name": [
            "Sheikh Zayed Institute for Pediatric Surgical Innovation, Children\u2019s National Medical Center, Room M7777, 111 Michigan Avenue, NW, 20010, Washington, DC, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Krieger", 
        "givenName": "Axel", 
        "id": "sg:person.01135600132.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01135600132.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Children\u2019s National Health System", 
          "id": "https://www.grid.ac/institutes/grid.239560.b", 
          "name": [
            "Sheikh Zayed Institute for Pediatric Surgical Innovation, Children\u2019s National Medical Center, Room M7777, 111 Michigan Avenue, NW, 20010, Washington, DC, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Peter C. W.", 
        "id": "sg:person.013155430022.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013155430022.46"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11548-012-0778-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010572810", 
          "https://doi.org/10.1007/s11548-012-0778-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.2089", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035817137", 
          "https://doi.org/10.1038/nmeth.2089"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00345-012-0879-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036870076", 
          "https://doi.org/10.1007/s00345-012-0879-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00464-013-2973-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043227061", 
          "https://doi.org/10.1007/s00464-013-2973-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/amiajnl-2012-001212", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052822968"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1089/end.2005.19.1212", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059256921"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tmm.2013.2246148", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061698117"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iembs.2009.5333120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077993579"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cbms.2011.5999138", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094062476"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/whc.2011.5945505", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094559449"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/robio.2011.6181327", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094819707"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icsmc.2011.6083972", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095611059"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/roman.2011.6005195", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095704094"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5244/c.25.101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099341318"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-06", 
    "datePublishedReg": "2014-06-01", 
    "description": "BACKGROUND: Current surgical robots are controlled by a mechanical master located away from the patient, tracking surgeon's hands by wire and pulleys or mechanical linkage. Contactless hand tracking for surgical robot control is an attractive alternative, because it can be executed with minimal footprint at the patient's bedside without impairing sterility, while eliminating current disassociation between surgeon and patient. We compared technical and technologic feasibility of contactless hand tracking to the current clinical standard master controllers.\nMETHODS: A hand-tracking system (Kinect\u2122-based 3Gear), a wire-based mechanical master (Mantis Duo), and a clinical mechanical linkage master (da Vinci) were evaluated for technical parameters with strong clinical relevance: system latency, static noise, robot slave tremor, and controller range. Five experienced surgeons performed a skill comparison study, evaluating the three different master controllers for efficiency and accuracy in peg transfer and pointing tasks.\nRESULTS: da Vinci had the lowest latency of 89\u00a0ms, followed by Mantis with 374\u00a0ms and 3Gear with 576\u00a0ms. Mantis and da Vinci produced zero static error. 3Gear produced average static error of 0.49\u00a0mm. The tremor of the robot used by the 3Gear and Mantis system had a radius of 1.7\u00a0mm compared with 0.5\u00a0mm for da Vinci. The three master controllers all had similar range. The surgeons took 1.98 times longer to complete the peg transfer task with the 3Gear system compared with Mantis, and 2.72 times longer with Mantis compared with da Vinci (p value 2.1e-9). For the pointer task, surgeons were most accurate with da Vinci with average error of 0.72\u00a0mm compared with Mantis's 1.61\u00a0mm and 3Gear's 2.41\u00a0mm (p value 0.00078).\nCONCLUSIONS: Contactless hand-tracking technology as a surgical master can execute simple surgical tasks. Whereas traditional master controllers outperformed, given that contactless hand-tracking is a first-generation technology, clinical potential is promising and could become a reality with some technical improvements.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00464-013-3383-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1098220", 
        "issn": [
          "0930-2794", 
          "1432-2218"
        ], 
        "name": "Surgical Endoscopy", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "28"
      }
    ], 
    "name": "Kinect technology for hand tracking control of surgical robots: technical and surgical skill comparison to current robotic masters", 
    "pagination": "1993-2000", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e93dada65d3a9dea80ee608a88b9b82486f765ec9a16fe1f6e2fab5c99d3279a"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "24380997"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "8806653"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00464-013-3383-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1048960652"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00464-013-3383-8", 
      "https://app.dimensions.ai/details/publication/pub.1048960652"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T22:25", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000483.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s00464-013-3383-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00464-013-3383-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00464-013-3383-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00464-013-3383-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00464-013-3383-8'


 

This table displays all metadata directly associated to this object as RDF triples.

167 TRIPLES      21 PREDICATES      49 URIs      27 LITERALS      15 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00464-013-3383-8 schema:about N00d2e1f43fc541529ce3e397af9a17d3
2 N0f6f80acf8c3444ead68d268c4fa1f51
3 N1423f9b2a847422491ea187409d00677
4 N636349fd892c4e8bb738408dd3da4bf3
5 N673aa7283f8d483db410da0fb50c088a
6 Nee8ece2ff044457d849fc9d92e8005b0
7 anzsrc-for:08
8 anzsrc-for:0801
9 schema:author N6a4972d6515c4eb980b52476619b1cbe
10 schema:citation sg:pub.10.1007/s00345-012-0879-0
11 sg:pub.10.1007/s00464-013-2973-9
12 sg:pub.10.1007/s11548-012-0778-2
13 sg:pub.10.1038/nmeth.2089
14 https://doi.org/10.1089/end.2005.19.1212
15 https://doi.org/10.1109/cbms.2011.5999138
16 https://doi.org/10.1109/icsmc.2011.6083972
17 https://doi.org/10.1109/iembs.2009.5333120
18 https://doi.org/10.1109/robio.2011.6181327
19 https://doi.org/10.1109/roman.2011.6005195
20 https://doi.org/10.1109/tmm.2013.2246148
21 https://doi.org/10.1109/whc.2011.5945505
22 https://doi.org/10.1136/amiajnl-2012-001212
23 https://doi.org/10.5244/c.25.101
24 schema:datePublished 2014-06
25 schema:datePublishedReg 2014-06-01
26 schema:description BACKGROUND: Current surgical robots are controlled by a mechanical master located away from the patient, tracking surgeon's hands by wire and pulleys or mechanical linkage. Contactless hand tracking for surgical robot control is an attractive alternative, because it can be executed with minimal footprint at the patient's bedside without impairing sterility, while eliminating current disassociation between surgeon and patient. We compared technical and technologic feasibility of contactless hand tracking to the current clinical standard master controllers. METHODS: A hand-tracking system (Kinect™-based 3Gear), a wire-based mechanical master (Mantis Duo), and a clinical mechanical linkage master (da Vinci) were evaluated for technical parameters with strong clinical relevance: system latency, static noise, robot slave tremor, and controller range. Five experienced surgeons performed a skill comparison study, evaluating the three different master controllers for efficiency and accuracy in peg transfer and pointing tasks. RESULTS: da Vinci had the lowest latency of 89 ms, followed by Mantis with 374 ms and 3Gear with 576 ms. Mantis and da Vinci produced zero static error. 3Gear produced average static error of 0.49 mm. The tremor of the robot used by the 3Gear and Mantis system had a radius of 1.7 mm compared with 0.5 mm for da Vinci. The three master controllers all had similar range. The surgeons took 1.98 times longer to complete the peg transfer task with the 3Gear system compared with Mantis, and 2.72 times longer with Mantis compared with da Vinci (p value 2.1e-9). For the pointer task, surgeons were most accurate with da Vinci with average error of 0.72 mm compared with Mantis's 1.61 mm and 3Gear's 2.41 mm (p value 0.00078). CONCLUSIONS: Contactless hand-tracking technology as a surgical master can execute simple surgical tasks. Whereas traditional master controllers outperformed, given that contactless hand-tracking is a first-generation technology, clinical potential is promising and could become a reality with some technical improvements.
27 schema:genre research_article
28 schema:inLanguage en
29 schema:isAccessibleForFree false
30 schema:isPartOf N79055047a11b49de90ebae4f56376428
31 Nc671679333e4450fad3a519a610b9cab
32 sg:journal.1098220
33 schema:name Kinect technology for hand tracking control of surgical robots: technical and surgical skill comparison to current robotic masters
34 schema:pagination 1993-2000
35 schema:productId N407b2fd930ca481295aa93172430a0b6
36 N6dcede1f6d8d42aa9b567a158db4e033
37 N8fea9b381365478294b5262c74e26d07
38 Nbfec75cf6dde40d0a8a0a38284548159
39 Nd4c0a931b6384e25922d8f8400dcdd30
40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048960652
41 https://doi.org/10.1007/s00464-013-3383-8
42 schema:sdDatePublished 2019-04-10T22:25
43 schema:sdLicense https://scigraph.springernature.com/explorer/license/
44 schema:sdPublisher N7b95bbd8f2f24d219265861d9a05eb74
45 schema:url http://link.springer.com/10.1007/s00464-013-3383-8
46 sgo:license sg:explorer/license/
47 sgo:sdDataset articles
48 rdf:type schema:ScholarlyArticle
49 N00d2e1f43fc541529ce3e397af9a17d3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
50 schema:name Robotics
51 rdf:type schema:DefinedTerm
52 N0f6f80acf8c3444ead68d268c4fa1f51 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
53 schema:name Feasibility Studies
54 rdf:type schema:DefinedTerm
55 N1423f9b2a847422491ea187409d00677 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
56 schema:name Equipment Design
57 rdf:type schema:DefinedTerm
58 N407b2fd930ca481295aa93172430a0b6 schema:name doi
59 schema:value 10.1007/s00464-013-3383-8
60 rdf:type schema:PropertyValue
61 N48ca32ef39f9420c90c2d5c6199449a6 rdf:first sg:person.01135600132.54
62 rdf:rest Ndfcf62feabaf452cb5dc8c960dbeaec9
63 N57fe76f8fdbb444eb382c87305325692 rdf:first sg:person.011125501141.59
64 rdf:rest N48ca32ef39f9420c90c2d5c6199449a6
65 N636349fd892c4e8bb738408dd3da4bf3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
66 schema:name Humans
67 rdf:type schema:DefinedTerm
68 N673aa7283f8d483db410da0fb50c088a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
69 schema:name Surgery, Computer-Assisted
70 rdf:type schema:DefinedTerm
71 N6a4972d6515c4eb980b52476619b1cbe rdf:first sg:person.01031076070.42
72 rdf:rest Nb1ad09f97cad463cb36dd8064b726c5a
73 N6dcede1f6d8d42aa9b567a158db4e033 schema:name dimensions_id
74 schema:value pub.1048960652
75 rdf:type schema:PropertyValue
76 N79055047a11b49de90ebae4f56376428 schema:issueNumber 6
77 rdf:type schema:PublicationIssue
78 N7b95bbd8f2f24d219265861d9a05eb74 schema:name Springer Nature - SN SciGraph project
79 rdf:type schema:Organization
80 N8fea9b381365478294b5262c74e26d07 schema:name pubmed_id
81 schema:value 24380997
82 rdf:type schema:PropertyValue
83 Nb1ad09f97cad463cb36dd8064b726c5a rdf:first sg:person.0723761603.19
84 rdf:rest N57fe76f8fdbb444eb382c87305325692
85 Nbfec75cf6dde40d0a8a0a38284548159 schema:name nlm_unique_id
86 schema:value 8806653
87 rdf:type schema:PropertyValue
88 Nc671679333e4450fad3a519a610b9cab schema:volumeNumber 28
89 rdf:type schema:PublicationVolume
90 Nd4c0a931b6384e25922d8f8400dcdd30 schema:name readcube_id
91 schema:value e93dada65d3a9dea80ee608a88b9b82486f765ec9a16fe1f6e2fab5c99d3279a
92 rdf:type schema:PropertyValue
93 Ndfcf62feabaf452cb5dc8c960dbeaec9 rdf:first sg:person.013155430022.46
94 rdf:rest rdf:nil
95 Nee8ece2ff044457d849fc9d92e8005b0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
96 schema:name Reaction Time
97 rdf:type schema:DefinedTerm
98 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
99 schema:name Information and Computing Sciences
100 rdf:type schema:DefinedTerm
101 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
102 schema:name Artificial Intelligence and Image Processing
103 rdf:type schema:DefinedTerm
104 sg:journal.1098220 schema:issn 0930-2794
105 1432-2218
106 schema:name Surgical Endoscopy
107 rdf:type schema:Periodical
108 sg:person.01031076070.42 schema:affiliation https://www.grid.ac/institutes/grid.239560.b
109 schema:familyName Kim
110 schema:givenName Yonjae
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01031076070.42
112 rdf:type schema:Person
113 sg:person.011125501141.59 schema:affiliation https://www.grid.ac/institutes/grid.239560.b
114 schema:familyName Shademan
115 schema:givenName Azad
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011125501141.59
117 rdf:type schema:Person
118 sg:person.01135600132.54 schema:affiliation https://www.grid.ac/institutes/grid.239560.b
119 schema:familyName Krieger
120 schema:givenName Axel
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01135600132.54
122 rdf:type schema:Person
123 sg:person.013155430022.46 schema:affiliation https://www.grid.ac/institutes/grid.239560.b
124 schema:familyName Kim
125 schema:givenName Peter C. W.
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013155430022.46
127 rdf:type schema:Person
128 sg:person.0723761603.19 schema:affiliation https://www.grid.ac/institutes/grid.239560.b
129 schema:familyName Leonard
130 schema:givenName Simon
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0723761603.19
132 rdf:type schema:Person
133 sg:pub.10.1007/s00345-012-0879-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036870076
134 https://doi.org/10.1007/s00345-012-0879-0
135 rdf:type schema:CreativeWork
136 sg:pub.10.1007/s00464-013-2973-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043227061
137 https://doi.org/10.1007/s00464-013-2973-9
138 rdf:type schema:CreativeWork
139 sg:pub.10.1007/s11548-012-0778-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010572810
140 https://doi.org/10.1007/s11548-012-0778-2
141 rdf:type schema:CreativeWork
142 sg:pub.10.1038/nmeth.2089 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035817137
143 https://doi.org/10.1038/nmeth.2089
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1089/end.2005.19.1212 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059256921
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1109/cbms.2011.5999138 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094062476
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1109/icsmc.2011.6083972 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095611059
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1109/iembs.2009.5333120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077993579
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1109/robio.2011.6181327 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094819707
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1109/roman.2011.6005195 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095704094
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1109/tmm.2013.2246148 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061698117
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1109/whc.2011.5945505 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094559449
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1136/amiajnl-2012-001212 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052822968
162 rdf:type schema:CreativeWork
163 https://doi.org/10.5244/c.25.101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099341318
164 rdf:type schema:CreativeWork
165 https://www.grid.ac/institutes/grid.239560.b schema:alternateName Children’s National Health System
166 schema:name Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Medical Center, Room M7777, 111 Michigan Avenue, NW, 20010, Washington, DC, USA
167 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...