Semiclassical description of large multipole-deformed metal clusters View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1997-12

AUTHORS

P. Meier, M. Brack, S.C. Creagh

ABSTRACT

We use the semiclassical periodic orbit theory to describe large metal clusters with axial quadrupole, octupole, or hexadecapole deformations. The clusters are regarded as cavities with ideally reflecting walls. We start from the case of spherical symmetry and then apply a perturbative approach for calculating the oscillating part of the level density in the deformed case. The advantage of this approach is that one only has to know the periodic orbits of the spherical cavity, which makes the calculation very simple. This perturbative method is a priori restricted to small deformations. However, the results agree quite well with those of quantum-mechanical calculations for deformations that are not too large, such as typically occur for the ground states of metal clusters. We also calculate shell-correction energies. With this, it becomes possible to predict at least qualitatively the deformation energy of metal clusters. More... »

PAGES

281-290

References to SciGraph publications

  • 1993-09. Modified Nilsson model for large sodium clusters in ZEITSCHRIFT FÜR PHYSIK D ATOMS,MOLECULES AND CLUSTERS
  • 1991-10. Observation of quantum supershells in clusters of sodium atoms in NATURE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s004600050324

    DOI

    http://dx.doi.org/10.1007/s004600050324

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1045663807


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Institut f\u00fcr Theoretische Physik, Universit\u00e4t Regensburg, D-93040, Regensburg, Germany", 
              "id": "http://www.grid.ac/institutes/grid.7727.5", 
              "name": [
                "Institut f\u00fcr Theoretische Physik, Universit\u00e4t Regensburg, D-93040, Regensburg, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Meier", 
            "givenName": "P.", 
            "id": "sg:person.016167366361.77", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016167366361.77"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institut f\u00fcr Theoretische Physik, Universit\u00e4t Regensburg, D-93040, Regensburg, Germany", 
              "id": "http://www.grid.ac/institutes/grid.7727.5", 
              "name": [
                "Institut f\u00fcr Theoretische Physik, Universit\u00e4t Regensburg, D-93040, Regensburg, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Brack", 
            "givenName": "M.", 
            "id": "sg:person.012734147145.29", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012734147145.29"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "D.P.T., I.P.N., Universit\u00e9 Paris-Sud, F-91406, Orsay, France", 
              "id": "http://www.grid.ac/institutes/grid.5842.b", 
              "name": [
                "D.P.T., I.P.N., Universit\u00e9 Paris-Sud, F-91406, Orsay, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Creagh", 
            "givenName": "S.C.", 
            "id": "sg:person.0730245113.59", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0730245113.59"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/353733a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014270391", 
              "https://doi.org/10.1038/353733a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01437890", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031530538", 
              "https://doi.org/10.1007/bf01437890"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1997-12", 
        "datePublishedReg": "1997-12-01", 
        "description": "We use the semiclassical periodic orbit theory to describe large metal clusters with axial quadrupole, octupole, or hexadecapole deformations. The clusters are regarded as cavities with ideally reflecting walls. We start from the case of spherical symmetry and then apply a perturbative approach for calculating the oscillating part of the level density in the deformed case. The advantage of this approach is that one only has to know the periodic orbits of the spherical cavity, which makes the calculation very simple. This perturbative method is a priori restricted to small deformations. However, the results agree quite well with those of quantum-mechanical calculations for deformations that are not too large, such as typically occur for the ground states of metal clusters. We also calculate shell-correction energies. With this, it becomes possible to predict at least qualitatively the deformation energy of metal clusters.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s004600050324", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1277743", 
            "issn": [
              "0178-7683", 
              "1431-5866"
            ], 
            "name": "Zeitschrift f\u00fcr Physik D Atoms,Molecules and Clusters", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "41"
          }
        ], 
        "keywords": [
          "small deformations", 
          "deformation energy", 
          "deformation", 
          "spherical cavity", 
          "metal clusters", 
          "semiclassical periodic orbit theory", 
          "quantum mechanical calculations", 
          "shell correction energy", 
          "periodic orbit theory", 
          "large metal clusters", 
          "oscillating part", 
          "semiclassical description", 
          "orbit theory", 
          "level density", 
          "ground state", 
          "hexadecapole deformation", 
          "spherical symmetry", 
          "energy", 
          "perturbative approach", 
          "perturbative method", 
          "deformed cases", 
          "calculations", 
          "axial quadrupole", 
          "cavity", 
          "wall", 
          "density", 
          "octupole", 
          "quadrupole", 
          "approach", 
          "advantages", 
          "clusters", 
          "periodic orbits", 
          "orbit", 
          "method", 
          "symmetry", 
          "results", 
          "cases", 
          "state", 
          "description", 
          "theory", 
          "part"
        ], 
        "name": "Semiclassical description of large multipole-deformed metal clusters", 
        "pagination": "281-290", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1045663807"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s004600050324"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s004600050324", 
          "https://app.dimensions.ai/details/publication/pub.1045663807"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-12-01T06:21", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_302.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s004600050324"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s004600050324'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s004600050324'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s004600050324'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s004600050324'


     

    This table displays all metadata directly associated to this object as RDF triples.

    123 TRIPLES      21 PREDICATES      68 URIs      58 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s004600050324 schema:about anzsrc-for:02
    2 anzsrc-for:0202
    3 schema:author N91e6ac0da25c45cbbc335ad3d6f88d72
    4 schema:citation sg:pub.10.1007/bf01437890
    5 sg:pub.10.1038/353733a0
    6 schema:datePublished 1997-12
    7 schema:datePublishedReg 1997-12-01
    8 schema:description We use the semiclassical periodic orbit theory to describe large metal clusters with axial quadrupole, octupole, or hexadecapole deformations. The clusters are regarded as cavities with ideally reflecting walls. We start from the case of spherical symmetry and then apply a perturbative approach for calculating the oscillating part of the level density in the deformed case. The advantage of this approach is that one only has to know the periodic orbits of the spherical cavity, which makes the calculation very simple. This perturbative method is a priori restricted to small deformations. However, the results agree quite well with those of quantum-mechanical calculations for deformations that are not too large, such as typically occur for the ground states of metal clusters. We also calculate shell-correction energies. With this, it becomes possible to predict at least qualitatively the deformation energy of metal clusters.
    9 schema:genre article
    10 schema:isAccessibleForFree false
    11 schema:isPartOf N0a7f01ece315448b9aa4cd157db3c7ab
    12 Nac3e8b8d9252445180df450ffb1effe1
    13 sg:journal.1277743
    14 schema:keywords advantages
    15 approach
    16 axial quadrupole
    17 calculations
    18 cases
    19 cavity
    20 clusters
    21 deformation
    22 deformation energy
    23 deformed cases
    24 density
    25 description
    26 energy
    27 ground state
    28 hexadecapole deformation
    29 large metal clusters
    30 level density
    31 metal clusters
    32 method
    33 octupole
    34 orbit
    35 orbit theory
    36 oscillating part
    37 part
    38 periodic orbit theory
    39 periodic orbits
    40 perturbative approach
    41 perturbative method
    42 quadrupole
    43 quantum mechanical calculations
    44 results
    45 semiclassical description
    46 semiclassical periodic orbit theory
    47 shell correction energy
    48 small deformations
    49 spherical cavity
    50 spherical symmetry
    51 state
    52 symmetry
    53 theory
    54 wall
    55 schema:name Semiclassical description of large multipole-deformed metal clusters
    56 schema:pagination 281-290
    57 schema:productId N519c1cb41edf48b59002f4d1e6d73254
    58 N543825c0187146f085b9ba7776f3095b
    59 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045663807
    60 https://doi.org/10.1007/s004600050324
    61 schema:sdDatePublished 2022-12-01T06:21
    62 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    63 schema:sdPublisher N59815c8f0c1c49af8321b8c8618146b1
    64 schema:url https://doi.org/10.1007/s004600050324
    65 sgo:license sg:explorer/license/
    66 sgo:sdDataset articles
    67 rdf:type schema:ScholarlyArticle
    68 N0a7f01ece315448b9aa4cd157db3c7ab schema:volumeNumber 41
    69 rdf:type schema:PublicationVolume
    70 N519c1cb41edf48b59002f4d1e6d73254 schema:name dimensions_id
    71 schema:value pub.1045663807
    72 rdf:type schema:PropertyValue
    73 N543825c0187146f085b9ba7776f3095b schema:name doi
    74 schema:value 10.1007/s004600050324
    75 rdf:type schema:PropertyValue
    76 N59815c8f0c1c49af8321b8c8618146b1 schema:name Springer Nature - SN SciGraph project
    77 rdf:type schema:Organization
    78 N91e6ac0da25c45cbbc335ad3d6f88d72 rdf:first sg:person.016167366361.77
    79 rdf:rest N97cee0704acd4ff79ea2380e93fc18e0
    80 N97cee0704acd4ff79ea2380e93fc18e0 rdf:first sg:person.012734147145.29
    81 rdf:rest Ndf06626b29b94210a5ebcc271e22064c
    82 Nac3e8b8d9252445180df450ffb1effe1 schema:issueNumber 4
    83 rdf:type schema:PublicationIssue
    84 Ndf06626b29b94210a5ebcc271e22064c rdf:first sg:person.0730245113.59
    85 rdf:rest rdf:nil
    86 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    87 schema:name Physical Sciences
    88 rdf:type schema:DefinedTerm
    89 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
    90 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
    91 rdf:type schema:DefinedTerm
    92 sg:journal.1277743 schema:issn 0178-7683
    93 1431-5866
    94 schema:name Zeitschrift für Physik D Atoms,Molecules and Clusters
    95 schema:publisher Springer Nature
    96 rdf:type schema:Periodical
    97 sg:person.012734147145.29 schema:affiliation grid-institutes:grid.7727.5
    98 schema:familyName Brack
    99 schema:givenName M.
    100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012734147145.29
    101 rdf:type schema:Person
    102 sg:person.016167366361.77 schema:affiliation grid-institutes:grid.7727.5
    103 schema:familyName Meier
    104 schema:givenName P.
    105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016167366361.77
    106 rdf:type schema:Person
    107 sg:person.0730245113.59 schema:affiliation grid-institutes:grid.5842.b
    108 schema:familyName Creagh
    109 schema:givenName S.C.
    110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0730245113.59
    111 rdf:type schema:Person
    112 sg:pub.10.1007/bf01437890 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031530538
    113 https://doi.org/10.1007/bf01437890
    114 rdf:type schema:CreativeWork
    115 sg:pub.10.1038/353733a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014270391
    116 https://doi.org/10.1038/353733a0
    117 rdf:type schema:CreativeWork
    118 grid-institutes:grid.5842.b schema:alternateName D.P.T., I.P.N., Université Paris-Sud, F-91406, Orsay, France
    119 schema:name D.P.T., I.P.N., Université Paris-Sud, F-91406, Orsay, France
    120 rdf:type schema:Organization
    121 grid-institutes:grid.7727.5 schema:alternateName Institut für Theoretische Physik, Universität Regensburg, D-93040, Regensburg, Germany
    122 schema:name Institut für Theoretische Physik, Universität Regensburg, D-93040, Regensburg, Germany
    123 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...