1996-03
AUTHORSC. Kohl, B. Montag, P.-G. Reinhard
ABSTRACTWe investigate the electronic shell structure of planar metal clusters, having in mind clusters on insulating surfaces with an interface energy such that the cluster covers the surface in a monolayer. In this first survey we concentrate on the shell effects of such a planar electron cloud using the Ultimate Jellium Model where the structural effects of the positive background are completely eliminated. An axially symmetric electron cloud shows shell effects which are, however, somewhat smaller than those of fully free threedimensional clusters. The free variation of the shape for planar clusters on surfaces, leading to many triaxial clusters, diminishes the shell effects even further, leading to the existence of hybrid-deformed clusters and a lack of energetically favored “magic” clusters in an intermediate size range N ≈ 10.30. In contrary to the situation for free clusters the small shell energies have a minor effect on the energetics of the groundstate. As a consequence, electronic shell effects are only one ingredient amongst others to determine the kinetics of cluster growth on (insulating) substrates. With a bold rescaling assumption, we can relate axially symmetric planar clusters to the planar electron cloud in a neutral quantum dot, having the consequence that shell effects persist to play a role in these systems. More... »
PAGES81-88
http://scigraph.springernature.com/pub.10.1007/s004600050068
DOIhttp://dx.doi.org/10.1007/s004600050068
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1039453318
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Chemical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Physical Chemistry (incl. Structural)",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Institut f\u00fcr Theoretische Physik, Universit\u00e4t Erlangen, D-91058, Erlangen, Germany",
"id": "http://www.grid.ac/institutes/grid.5330.5",
"name": [
"Institut f\u00fcr Theoretische Physik, Universit\u00e4t Erlangen, D-91058, Erlangen, Germany"
],
"type": "Organization"
},
"familyName": "Kohl",
"givenName": "C.",
"id": "sg:person.010230320662.61",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010230320662.61"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Institut f\u00fcr Theoretische Physik, Universit\u00e4t Erlangen, D-91058, Erlangen, Germany",
"id": "http://www.grid.ac/institutes/grid.5330.5",
"name": [
"Institut f\u00fcr Theoretische Physik, Universit\u00e4t Erlangen, D-91058, Erlangen, Germany"
],
"type": "Organization"
},
"familyName": "Montag",
"givenName": "B.",
"id": "sg:person.016646377777.05",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016646377777.05"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Institut f\u00fcr Theoretische Physik, Universit\u00e4t Erlangen, D-91058, Erlangen, Germany",
"id": "http://www.grid.ac/institutes/grid.5330.5",
"name": [
"Institut f\u00fcr Theoretische Physik, Universit\u00e4t Erlangen, D-91058, Erlangen, Germany"
],
"type": "Organization"
},
"familyName": "Reinhard",
"givenName": "P.-G.",
"id": "sg:person.01331316645.49",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01331316645.49"
],
"type": "Person"
}
],
"datePublished": "1996-03",
"datePublishedReg": "1996-03-01",
"description": "We investigate the electronic shell structure of planar metal clusters, having in mind clusters on insulating surfaces with an interface energy such that the cluster covers the surface in a monolayer. In this first survey we concentrate on the shell effects of such a planar electron cloud using the Ultimate Jellium Model where the structural effects of the positive background are completely eliminated. An axially symmetric electron cloud shows shell effects which are, however, somewhat smaller than those of fully free threedimensional clusters. The free variation of the shape for planar clusters on surfaces, leading to many triaxial clusters, diminishes the shell effects even further, leading to the existence of hybrid-deformed clusters and a lack of energetically favored \u201cmagic\u201d clusters in an intermediate size range N \u2248 10.30. In contrary to the situation for free clusters the small shell energies have a minor effect on the energetics of the groundstate. As a consequence, electronic shell effects are only one ingredient amongst others to determine the kinetics of cluster growth on (insulating) substrates. With a bold rescaling assumption, we can relate axially symmetric planar clusters to the planar electron cloud in a neutral quantum dot, having the consequence that shell effects persist to play a role in these systems.",
"genre": "article",
"id": "sg:pub.10.1007/s004600050068",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1277743",
"issn": [
"0178-7683",
"1431-5866"
],
"name": "Zeitschrift f\u00fcr Physik D Atoms,Molecules and Clusters",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "1",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "38"
}
],
"keywords": [
"shell effects",
"electron cloud",
"neutral quantum dots",
"planar clusters",
"electronic shell structure",
"triaxial clusters",
"shell energies",
"electron clusters",
"quantum dots",
"positive background",
"jellium model",
"free clusters",
"ultimate jellium model",
"range n",
"electronic shell effects",
"metal clusters",
"cluster growth",
"shell structure",
"energy",
"cloud",
"size range n",
"interface energy",
"groundstate",
"clusters",
"dots",
"surface",
"monolayers",
"structural effects",
"energetics",
"substrate",
"structure",
"shape",
"existence",
"effect",
"system",
"variation",
"minor effect",
"kinetics",
"model",
"consequences",
"first survey",
"assumption",
"background",
"contrary",
"ingredients",
"free variation",
"growth",
"survey",
"situation",
"role",
"lack"
],
"name": "Shell effects in planar electron clusters",
"pagination": "81-88",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1039453318"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s004600050068"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s004600050068",
"https://app.dimensions.ai/details/publication/pub.1039453318"
],
"sdDataset": "articles",
"sdDatePublished": "2022-08-04T16:53",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_296.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s004600050068"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s004600050068'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s004600050068'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s004600050068'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s004600050068'
This table displays all metadata directly associated to this object as RDF triples.
122 TRIPLES
20 PREDICATES
76 URIs
68 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/s004600050068 | schema:about | anzsrc-for:03 |
2 | ″ | ″ | anzsrc-for:0306 |
3 | ″ | schema:author | N219a7da32b284dee8624abcc88640663 |
4 | ″ | schema:datePublished | 1996-03 |
5 | ″ | schema:datePublishedReg | 1996-03-01 |
6 | ″ | schema:description | We investigate the electronic shell structure of planar metal clusters, having in mind clusters on insulating surfaces with an interface energy such that the cluster covers the surface in a monolayer. In this first survey we concentrate on the shell effects of such a planar electron cloud using the Ultimate Jellium Model where the structural effects of the positive background are completely eliminated. An axially symmetric electron cloud shows shell effects which are, however, somewhat smaller than those of fully free threedimensional clusters. The free variation of the shape for planar clusters on surfaces, leading to many triaxial clusters, diminishes the shell effects even further, leading to the existence of hybrid-deformed clusters and a lack of energetically favored “magic” clusters in an intermediate size range N ≈ 10.30. In contrary to the situation for free clusters the small shell energies have a minor effect on the energetics of the groundstate. As a consequence, electronic shell effects are only one ingredient amongst others to determine the kinetics of cluster growth on (insulating) substrates. With a bold rescaling assumption, we can relate axially symmetric planar clusters to the planar electron cloud in a neutral quantum dot, having the consequence that shell effects persist to play a role in these systems. |
7 | ″ | schema:genre | article |
8 | ″ | schema:isAccessibleForFree | false |
9 | ″ | schema:isPartOf | Ned0badf90718404d9ef161b6201bbeb5 |
10 | ″ | ″ | Ned2ca315fb2c4531b5463d414ff60530 |
11 | ″ | ″ | sg:journal.1277743 |
12 | ″ | schema:keywords | assumption |
13 | ″ | ″ | background |
14 | ″ | ″ | cloud |
15 | ″ | ″ | cluster growth |
16 | ″ | ″ | clusters |
17 | ″ | ″ | consequences |
18 | ″ | ″ | contrary |
19 | ″ | ″ | dots |
20 | ″ | ″ | effect |
21 | ″ | ″ | electron cloud |
22 | ″ | ″ | electron clusters |
23 | ″ | ″ | electronic shell effects |
24 | ″ | ″ | electronic shell structure |
25 | ″ | ″ | energetics |
26 | ″ | ″ | energy |
27 | ″ | ″ | existence |
28 | ″ | ″ | first survey |
29 | ″ | ″ | free clusters |
30 | ″ | ″ | free variation |
31 | ″ | ″ | groundstate |
32 | ″ | ″ | growth |
33 | ″ | ″ | ingredients |
34 | ″ | ″ | interface energy |
35 | ″ | ″ | jellium model |
36 | ″ | ″ | kinetics |
37 | ″ | ″ | lack |
38 | ″ | ″ | metal clusters |
39 | ″ | ″ | minor effect |
40 | ″ | ″ | model |
41 | ″ | ″ | monolayers |
42 | ″ | ″ | neutral quantum dots |
43 | ″ | ″ | planar clusters |
44 | ″ | ″ | positive background |
45 | ″ | ″ | quantum dots |
46 | ″ | ″ | range n |
47 | ″ | ″ | role |
48 | ″ | ″ | shape |
49 | ″ | ″ | shell effects |
50 | ″ | ″ | shell energies |
51 | ″ | ″ | shell structure |
52 | ″ | ″ | situation |
53 | ″ | ″ | size range n |
54 | ″ | ″ | structural effects |
55 | ″ | ″ | structure |
56 | ″ | ″ | substrate |
57 | ″ | ″ | surface |
58 | ″ | ″ | survey |
59 | ″ | ″ | system |
60 | ″ | ″ | triaxial clusters |
61 | ″ | ″ | ultimate jellium model |
62 | ″ | ″ | variation |
63 | ″ | schema:name | Shell effects in planar electron clusters |
64 | ″ | schema:pagination | 81-88 |
65 | ″ | schema:productId | N6bedbce073144aa7b23787afe35edde9 |
66 | ″ | ″ | N871045c28acd4eb28f645163dfd8fbef |
67 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1039453318 |
68 | ″ | ″ | https://doi.org/10.1007/s004600050068 |
69 | ″ | schema:sdDatePublished | 2022-08-04T16:53 |
70 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
71 | ″ | schema:sdPublisher | N50380d8b0e614453934e3e0fa4d22ee7 |
72 | ″ | schema:url | https://doi.org/10.1007/s004600050068 |
73 | ″ | sgo:license | sg:explorer/license/ |
74 | ″ | sgo:sdDataset | articles |
75 | ″ | rdf:type | schema:ScholarlyArticle |
76 | N219a7da32b284dee8624abcc88640663 | rdf:first | sg:person.010230320662.61 |
77 | ″ | rdf:rest | Nf8709c7290a64066bb39f4b646e663fe |
78 | N50380d8b0e614453934e3e0fa4d22ee7 | schema:name | Springer Nature - SN SciGraph project |
79 | ″ | rdf:type | schema:Organization |
80 | N53c8fcbdcfa94d409d9942310a77a944 | rdf:first | sg:person.01331316645.49 |
81 | ″ | rdf:rest | rdf:nil |
82 | N6bedbce073144aa7b23787afe35edde9 | schema:name | doi |
83 | ″ | schema:value | 10.1007/s004600050068 |
84 | ″ | rdf:type | schema:PropertyValue |
85 | N871045c28acd4eb28f645163dfd8fbef | schema:name | dimensions_id |
86 | ″ | schema:value | pub.1039453318 |
87 | ″ | rdf:type | schema:PropertyValue |
88 | Ned0badf90718404d9ef161b6201bbeb5 | schema:issueNumber | 1 |
89 | ″ | rdf:type | schema:PublicationIssue |
90 | Ned2ca315fb2c4531b5463d414ff60530 | schema:volumeNumber | 38 |
91 | ″ | rdf:type | schema:PublicationVolume |
92 | Nf8709c7290a64066bb39f4b646e663fe | rdf:first | sg:person.016646377777.05 |
93 | ″ | rdf:rest | N53c8fcbdcfa94d409d9942310a77a944 |
94 | anzsrc-for:03 | schema:inDefinedTermSet | anzsrc-for: |
95 | ″ | schema:name | Chemical Sciences |
96 | ″ | rdf:type | schema:DefinedTerm |
97 | anzsrc-for:0306 | schema:inDefinedTermSet | anzsrc-for: |
98 | ″ | schema:name | Physical Chemistry (incl. Structural) |
99 | ″ | rdf:type | schema:DefinedTerm |
100 | sg:journal.1277743 | schema:issn | 0178-7683 |
101 | ″ | ″ | 1431-5866 |
102 | ″ | schema:name | Zeitschrift für Physik D Atoms,Molecules and Clusters |
103 | ″ | schema:publisher | Springer Nature |
104 | ″ | rdf:type | schema:Periodical |
105 | sg:person.010230320662.61 | schema:affiliation | grid-institutes:grid.5330.5 |
106 | ″ | schema:familyName | Kohl |
107 | ″ | schema:givenName | C. |
108 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010230320662.61 |
109 | ″ | rdf:type | schema:Person |
110 | sg:person.01331316645.49 | schema:affiliation | grid-institutes:grid.5330.5 |
111 | ″ | schema:familyName | Reinhard |
112 | ″ | schema:givenName | P.-G. |
113 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01331316645.49 |
114 | ″ | rdf:type | schema:Person |
115 | sg:person.016646377777.05 | schema:affiliation | grid-institutes:grid.5330.5 |
116 | ″ | schema:familyName | Montag |
117 | ″ | schema:givenName | B. |
118 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016646377777.05 |
119 | ″ | rdf:type | schema:Person |
120 | grid-institutes:grid.5330.5 | schema:alternateName | Institut für Theoretische Physik, Universität Erlangen, D-91058, Erlangen, Germany |
121 | ″ | schema:name | Institut für Theoretische Physik, Universität Erlangen, D-91058, Erlangen, Germany |
122 | ″ | rdf:type | schema:Organization |