A Note on Aperiodic Ammann Tiles View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2012-03-08

AUTHORS

Shigeki Akiyama

ABSTRACT

We present a variant of Ammann tiles consisting of two similar rectilinear hexagons with edge subdivision, which can tile the plane but only in non-periodic ways. A special matching rule, ghost marking, plays a key role in the proof.

PAGES

702-710

References to SciGraph publications

  • 1997-08. Fractal penrose tiles II: Tiles with fractal boundary as duals of penrose triangles in AEQUATIONES MATHEMATICAE
  • 2011-11-08. Forcing Nonperiodicity with a Single Tile in THE MATHEMATICAL INTELLIGENCER
  • 2004-09. The Mysterious Mr. Ammann in THE MATHEMATICAL INTELLIGENCER
  • 1998-06. Nonperiodicity implies unique composition for self-similar translationally finite Tilings in DISCRETE & COMPUTATIONAL GEOMETRY
  • 1992-07-01. Aperiodic tiles in DISCRETE & COMPUTATIONAL GEOMETRY
  • 2010-05-06. Similar dissection of sets in GEOMETRIAE DEDICATA
  • 2008-03-05. Pure Point Diffractive Substitution Delone Sets Have the Meyer Property in DISCRETE & COMPUTATIONAL GEOMETRY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00454-012-9418-4

    DOI

    http://dx.doi.org/10.1007/s00454-012-9418-4

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1050210745


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Numerical and Computational Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0802", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Computation Theory and Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Mathematics, Faculty of Science, Niigata University, Ikarashi-2, 8050, Nishiku, Niigata, Japan", 
              "id": "http://www.grid.ac/institutes/grid.260975.f", 
              "name": [
                "Department of Mathematics, Faculty of Science, Niigata University, Ikarashi-2, 8050, Nishiku, Niigata, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Akiyama", 
            "givenName": "Shigeki", 
            "id": "sg:person.011153327405.03", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011153327405.03"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s10711-010-9502-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015354336", 
              "https://doi.org/10.1007/s10711-010-9502-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02293033", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036610774", 
              "https://doi.org/10.1007/bf02293033"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02755450", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008253053", 
              "https://doi.org/10.1007/bf02755450"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/pl00009386", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045414152", 
              "https://doi.org/10.1007/pl00009386"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00454-008-9054-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048844964", 
              "https://doi.org/10.1007/s00454-008-9054-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00283-011-9255-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052169783", 
              "https://doi.org/10.1007/s00283-011-9255-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02985414", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014661603", 
              "https://doi.org/10.1007/bf02985414"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2012-03-08", 
        "datePublishedReg": "2012-03-08", 
        "description": "We present a variant of Ammann tiles consisting of two similar rectilinear hexagons with edge subdivision, which can tile the plane but only in non-periodic ways. A special matching rule, ghost marking, plays a key role in the proof.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s00454-012-9418-4", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.6095525", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1043660", 
            "issn": [
              "0179-5376", 
              "1432-0444"
            ], 
            "name": "Discrete & Computational Geometry", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "48"
          }
        ], 
        "keywords": [
          "key role", 
          "variants", 
          "role", 
          "subdivision", 
          "note", 
          "marking", 
          "proof", 
          "way", 
          "plane", 
          "rules", 
          "tiles", 
          "hexagons", 
          "matching rules", 
          "edge subdivisions"
        ], 
        "name": "A Note on Aperiodic Ammann Tiles", 
        "pagination": "702-710", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1050210745"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00454-012-9418-4"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00454-012-9418-4", 
          "https://app.dimensions.ai/details/publication/pub.1050210745"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-05-10T10:03", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_560.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s00454-012-9418-4"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00454-012-9418-4'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00454-012-9418-4'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00454-012-9418-4'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00454-012-9418-4'


     

    This table displays all metadata directly associated to this object as RDF triples.

    114 TRIPLES      22 PREDICATES      49 URIs      31 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00454-012-9418-4 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 anzsrc-for:0103
    4 anzsrc-for:08
    5 anzsrc-for:0802
    6 schema:author Nb81296c5b848472589e099f4fc316022
    7 schema:citation sg:pub.10.1007/bf02293033
    8 sg:pub.10.1007/bf02755450
    9 sg:pub.10.1007/bf02985414
    10 sg:pub.10.1007/pl00009386
    11 sg:pub.10.1007/s00283-011-9255-y
    12 sg:pub.10.1007/s00454-008-9054-1
    13 sg:pub.10.1007/s10711-010-9502-y
    14 schema:datePublished 2012-03-08
    15 schema:datePublishedReg 2012-03-08
    16 schema:description We present a variant of Ammann tiles consisting of two similar rectilinear hexagons with edge subdivision, which can tile the plane but only in non-periodic ways. A special matching rule, ghost marking, plays a key role in the proof.
    17 schema:genre article
    18 schema:inLanguage en
    19 schema:isAccessibleForFree true
    20 schema:isPartOf N24e1b960451d4898b8e3ebc5dec0dabd
    21 Ne231a0988114464a89758244672a9e9e
    22 sg:journal.1043660
    23 schema:keywords edge subdivisions
    24 hexagons
    25 key role
    26 marking
    27 matching rules
    28 note
    29 plane
    30 proof
    31 role
    32 rules
    33 subdivision
    34 tiles
    35 variants
    36 way
    37 schema:name A Note on Aperiodic Ammann Tiles
    38 schema:pagination 702-710
    39 schema:productId N3f3c91ff160c43c9ae0ac7331d64f552
    40 N9449cd4cb038465db493b2f264f1772f
    41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050210745
    42 https://doi.org/10.1007/s00454-012-9418-4
    43 schema:sdDatePublished 2022-05-10T10:03
    44 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    45 schema:sdPublisher Ne572de36d2df41a3a0726cfbc725783d
    46 schema:url https://doi.org/10.1007/s00454-012-9418-4
    47 sgo:license sg:explorer/license/
    48 sgo:sdDataset articles
    49 rdf:type schema:ScholarlyArticle
    50 N24e1b960451d4898b8e3ebc5dec0dabd schema:issueNumber 3
    51 rdf:type schema:PublicationIssue
    52 N3f3c91ff160c43c9ae0ac7331d64f552 schema:name dimensions_id
    53 schema:value pub.1050210745
    54 rdf:type schema:PropertyValue
    55 N9449cd4cb038465db493b2f264f1772f schema:name doi
    56 schema:value 10.1007/s00454-012-9418-4
    57 rdf:type schema:PropertyValue
    58 Nb81296c5b848472589e099f4fc316022 rdf:first sg:person.011153327405.03
    59 rdf:rest rdf:nil
    60 Ne231a0988114464a89758244672a9e9e schema:volumeNumber 48
    61 rdf:type schema:PublicationVolume
    62 Ne572de36d2df41a3a0726cfbc725783d schema:name Springer Nature - SN SciGraph project
    63 rdf:type schema:Organization
    64 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    65 schema:name Mathematical Sciences
    66 rdf:type schema:DefinedTerm
    67 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    68 schema:name Pure Mathematics
    69 rdf:type schema:DefinedTerm
    70 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
    71 schema:name Numerical and Computational Mathematics
    72 rdf:type schema:DefinedTerm
    73 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    74 schema:name Information and Computing Sciences
    75 rdf:type schema:DefinedTerm
    76 anzsrc-for:0802 schema:inDefinedTermSet anzsrc-for:
    77 schema:name Computation Theory and Mathematics
    78 rdf:type schema:DefinedTerm
    79 sg:grant.6095525 http://pending.schema.org/fundedItem sg:pub.10.1007/s00454-012-9418-4
    80 rdf:type schema:MonetaryGrant
    81 sg:journal.1043660 schema:issn 0179-5376
    82 1432-0444
    83 schema:name Discrete & Computational Geometry
    84 schema:publisher Springer Nature
    85 rdf:type schema:Periodical
    86 sg:person.011153327405.03 schema:affiliation grid-institutes:grid.260975.f
    87 schema:familyName Akiyama
    88 schema:givenName Shigeki
    89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011153327405.03
    90 rdf:type schema:Person
    91 sg:pub.10.1007/bf02293033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036610774
    92 https://doi.org/10.1007/bf02293033
    93 rdf:type schema:CreativeWork
    94 sg:pub.10.1007/bf02755450 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008253053
    95 https://doi.org/10.1007/bf02755450
    96 rdf:type schema:CreativeWork
    97 sg:pub.10.1007/bf02985414 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014661603
    98 https://doi.org/10.1007/bf02985414
    99 rdf:type schema:CreativeWork
    100 sg:pub.10.1007/pl00009386 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045414152
    101 https://doi.org/10.1007/pl00009386
    102 rdf:type schema:CreativeWork
    103 sg:pub.10.1007/s00283-011-9255-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1052169783
    104 https://doi.org/10.1007/s00283-011-9255-y
    105 rdf:type schema:CreativeWork
    106 sg:pub.10.1007/s00454-008-9054-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048844964
    107 https://doi.org/10.1007/s00454-008-9054-1
    108 rdf:type schema:CreativeWork
    109 sg:pub.10.1007/s10711-010-9502-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1015354336
    110 https://doi.org/10.1007/s10711-010-9502-y
    111 rdf:type schema:CreativeWork
    112 grid-institutes:grid.260975.f schema:alternateName Department of Mathematics, Faculty of Science, Niigata University, Ikarashi-2, 8050, Nishiku, Niigata, Japan
    113 schema:name Department of Mathematics, Faculty of Science, Niigata University, Ikarashi-2, 8050, Nishiku, Niigata, Japan
    114 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...