Why Did the Shape of Your Network Change? (On Detecting Network Anomalies via Non-local Curvatures) View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2020-01-22

AUTHORS

Bhaskar DasGupta, Mano Vikash Janardhanan, Farzane Yahyanejad

ABSTRACT

Anomaly detection problems (also called change-point detection problems) have been studied in data mining, statistics and computer science over the last several decades (mostly in non-network context) in applications such as medical condition monitoring, weather change detection and speech recognition. In recent days, however, anomaly detection problems have become increasing more relevant in the context of network science since useful insights for many complex systems in biology, finance and social science are often obtained by representing them via networks. Notions of local and non-local curvatures of higher-dimensional geometric shapes and topological spaces play a fundamental role in physics and mathematics in characterizing anomalous behaviours of these higher dimensional entities. However, using curvature measures to detect anomalies in networks is not yet very common. To this end, a main goal in this paper to formulate and analyze curvature analysis methods to provide the foundations of systematic approaches to find critical components and detect anomalies in networks. For this purpose, we use two measures of network curvatures which depend on non-trivial global properties, such as distributions of geodesics and higher-order correlations among nodes, of the given network. Based on these measures, we precisely formulate several computational problems related to anomaly detection in static or dynamic networks, and provide non-trivial computational complexity results for these problems. This paper must not be viewed as delivering the final word on appropriateness and suitability of specific curvature measures. Instead, it is our hope that this paper will stimulate and motivate further theoretical or empirical research concerning the exciting interplay between notions of curvatures from network and non-network domains, a much desired goal in our opinion. More... »

PAGES

1741-1783

References to SciGraph publications

  • 2019-12-16. A survey of some tensor analysis techniques for biological systems in QUANTITATIVE BIOLOGY
  • 2006-01-15. Detecting rich-club ordering in complex networks in NATURE PHYSICS
  • 1999. Metric Spaces of Non-Positive Curvature in NONE
  • 2005. Distance Labeling in Hyperbolic Graphs in ALGORITHMS AND COMPUTATION
  • 2004-04. Gromov hyperbolicity through decomposition of metric spaces in ACTA MATHEMATICA HUNGARICA
  • 2014. Approximation Algorithms for the Gromov Hyperbolicity of Discrete Metric Spaces in LATIN 2014: THEORETICAL INFORMATICS
  • 2003-01-30. Exact Algorithms for NP-Hard Problems: A Survey in COMBINATORIAL OPTIMIZATION — EUREKA, YOU SHRINK!
  • 1998-12. Expanders are not hyperbolic in ISRAEL JOURNAL OF MATHEMATICS
  • 2007. Packing and Covering δ-Hyperbolic Spaces by Balls in APPROXIMATION, RANDOMIZATION, AND COMBINATORIAL OPTIMIZATION. ALGORITHMS AND TECHNIQUES
  • 2019-06-04. Fast Approximation and Exact Computation of Negative Curvature Parameters of Graphs in DISCRETE & COMPUTATIONAL GEOMETRY
  • 2009-01-18. Curvature of Indoor Sensor Network: Clustering Coefficient in EURASIP JOURNAL ON WIRELESS COMMUNICATIONS AND NETWORKING
  • 2015. Parameterized Algorithms in NONE
  • 2003-02. Bochner's Method for Cell Complexes and Combinatorial Ricci Curvature in DISCRETE & COMPUTATIONAL GEOMETRY
  • 2011-10-11. Bayesian on-line spectral change point detection: a soft computing approach for on-line ASR in INTERNATIONAL JOURNAL OF SPEECH TECHNOLOGY
  • 2016-09-08. A survey of methods for time series change point detection in KNOWLEDGE AND INFORMATION SYSTEMS
  • 2010-12-24. Additive Spanners and Distance and Routing Labeling Schemes for Hyperbolic Graphs in ALGORITHMICA
  • 2017-02-17. Effect of Gromov-Hyperbolicity Parameter on Cuts and Expansions in Graphs and Some Algorithmic Implications in ALGORITHMICA
  • 2018-06-05. Comparative analysis of two discretizations of Ricci curvature for complex networks in SCIENTIFIC REPORTS
  • 1987. Hyperbolic Groups in ESSAYS IN GROUP THEORY
  • 2007-10-09. Inferring (Biological) Signal Transduction Networks via Transitive Reductions of Directed Graphs in ALGORITHMICA
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00453-019-00665-7

    DOI

    http://dx.doi.org/10.1007/s00453-019-00665-7

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1124231456


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Computer Science, University of Illinois at Chicago, 60607, Chicago, IL, USA", 
              "id": "http://www.grid.ac/institutes/grid.185648.6", 
              "name": [
                "Department of Computer Science, University of Illinois at Chicago, 60607, Chicago, IL, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "DasGupta", 
            "givenName": "Bhaskar", 
            "id": "sg:person.0763403270.10", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0763403270.10"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Mathematics, University of Illinois at Chicago, 60607, Chicago, IL, USA", 
              "id": "http://www.grid.ac/institutes/grid.185648.6", 
              "name": [
                "Department of Mathematics, University of Illinois at Chicago, 60607, Chicago, IL, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Janardhanan", 
            "givenName": "Mano Vikash", 
            "id": "sg:person.010203051363.32", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010203051363.32"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Computer Science, University of Illinois at Chicago, 60607, Chicago, IL, USA", 
              "id": "http://www.grid.ac/institutes/grid.185648.6", 
              "name": [
                "Department of Computer Science, University of Illinois at Chicago, 60607, Chicago, IL, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yahyanejad", 
            "givenName": "Farzane", 
            "id": "sg:person.012577157437.32", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012577157437.32"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-3-642-54423-1_25", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024407756", 
              "https://doi.org/10.1007/978-3-642-54423-1_25"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-21275-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004947649", 
              "https://doi.org/10.1007/978-3-319-21275-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-662-12494-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018384993", 
              "https://doi.org/10.1007/978-3-662-12494-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10772-011-9116-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027135347", 
              "https://doi.org/10.1007/s10772-011-9116-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s40484-019-0186-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1123440096", 
              "https://doi.org/10.1007/s40484-019-0186-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-74208-1_5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032702066", 
              "https://doi.org/10.1007/978-3-540-74208-1_5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1155/2008/213185", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014245856", 
              "https://doi.org/10.1155/2008/213185"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00453-007-9055-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026603604", 
              "https://doi.org/10.1007/s00453-007-9055-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00454-019-00107-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1116644907", 
              "https://doi.org/10.1007/s00454-019-00107-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00453-017-0291-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083911729", 
              "https://doi.org/10.1007/s00453-017-0291-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/b:amhu.0000028240.16521.9d", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003152551", 
              "https://doi.org/10.1023/b:amhu.0000028240.16521.9d"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00454-002-0743-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010231584", 
              "https://doi.org/10.1007/s00454-002-0743-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-36478-1_17", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026956598", 
              "https://doi.org/10.1007/3-540-36478-1_17"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00453-010-9478-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047593355", 
              "https://doi.org/10.1007/s00453-010-9478-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10115-016-0987-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053043091", 
              "https://doi.org/10.1007/s10115-016-0987-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41598-018-27001-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1104316461", 
              "https://doi.org/10.1038/s41598-018-27001-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/11602613_106", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026406190", 
              "https://doi.org/10.1007/11602613_106"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys209", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018047307", 
              "https://doi.org/10.1038/nphys209"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02783040", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034381686", 
              "https://doi.org/10.1007/bf02783040"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4613-9586-7_3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038753055", 
              "https://doi.org/10.1007/978-1-4613-9586-7_3"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2020-01-22", 
        "datePublishedReg": "2020-01-22", 
        "description": "Anomaly detection problems (also called change-point detection problems) have been studied in data mining, statistics and computer science over the last several decades (mostly in non-network context) in applications such as medical condition monitoring, weather change detection and speech recognition. In recent days, however, anomaly detection problems have become increasing more relevant in the context of network science since useful insights for many complex systems in biology, finance and social science are often obtained by representing them via networks. Notions of local and non-local curvatures of higher-dimensional geometric shapes and topological spaces play a fundamental role in physics and mathematics in characterizing anomalous behaviours of these higher dimensional entities. However, using curvature measures to detect anomalies in networks is not yet very common. To this end, a main goal in this paper to formulate and analyze curvature analysis methods to provide the foundations of systematic approaches to find critical components and detect anomalies in networks. For this purpose, we use two measures of network curvatures which depend on non-trivial global properties, such as distributions of geodesics and higher-order correlations among nodes, of the given network. Based on these measures, we precisely formulate several computational problems related to anomaly detection in static or dynamic networks, and provide non-trivial computational complexity results for these problems. This paper must not be viewed as delivering the final word on appropriateness and suitability of specific curvature measures. Instead, it is our hope that this paper will stimulate and motivate further theoretical or empirical research concerning the exciting interplay between notions of curvatures from network and non-network domains, a much desired goal in our opinion.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s00453-019-00665-7", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.3135580", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.7704338", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1047644", 
            "issn": [
              "0178-4617", 
              "1432-0541"
            ], 
            "name": "Algorithmica", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "7", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "82"
          }
        ], 
        "keywords": [
          "anomaly detection problem", 
          "detection problem", 
          "higher-dimensional entities", 
          "medical condition monitoring", 
          "curvature measures", 
          "notion of curvature", 
          "data mining", 
          "anomaly detection", 
          "speech recognition", 
          "computer science", 
          "higher-order correlations", 
          "computational complexity", 
          "computational problems", 
          "dynamic networks", 
          "network curvature", 
          "change detection", 
          "topological spaces", 
          "curvature analysis method", 
          "global properties", 
          "network science", 
          "recent days", 
          "network", 
          "exciting interplay", 
          "complex systems", 
          "dimensional entity", 
          "condition monitoring", 
          "network changes", 
          "geometric shapes", 
          "anomalous behavior", 
          "main goal", 
          "curvature", 
          "problem", 
          "systematic approach", 
          "mining", 
          "analysis method", 
          "geodesics", 
          "physics", 
          "mathematics", 
          "useful insights", 
          "nodes", 
          "detection", 
          "complexity", 
          "critical component", 
          "goal", 
          "recognition", 
          "statistics", 
          "space", 
          "science", 
          "shape", 
          "fundamental role", 
          "applications", 
          "notion", 
          "entities", 
          "system", 
          "domain", 
          "distribution", 
          "monitoring", 
          "words", 
          "properties", 
          "social sciences", 
          "context", 
          "approach", 
          "foundation", 
          "method", 
          "research", 
          "measures", 
          "interplay", 
          "suitability", 
          "anomalies", 
          "empirical research", 
          "end", 
          "behavior", 
          "finance", 
          "purpose", 
          "components", 
          "opinion", 
          "decades", 
          "appropriateness", 
          "insights", 
          "correlation", 
          "biology", 
          "hope", 
          "role", 
          "final word", 
          "changes", 
          "days", 
          "paper"
        ], 
        "name": "Why Did the Shape of Your Network Change? (On Detecting Network Anomalies via Non-local Curvatures)", 
        "pagination": "1741-1783", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1124231456"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00453-019-00665-7"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00453-019-00665-7", 
          "https://app.dimensions.ai/details/publication/pub.1124231456"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-05-20T07:37", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_839.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s00453-019-00665-7"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00453-019-00665-7'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00453-019-00665-7'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00453-019-00665-7'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00453-019-00665-7'


     

    This table displays all metadata directly associated to this object as RDF triples.

    253 TRIPLES      22 PREDICATES      134 URIs      104 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00453-019-00665-7 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 anzsrc-for:08
    4 anzsrc-for:0801
    5 schema:author N042de71d29d34cd8a7b322fcb9ed8eb9
    6 schema:citation sg:pub.10.1007/11602613_106
    7 sg:pub.10.1007/3-540-36478-1_17
    8 sg:pub.10.1007/978-1-4613-9586-7_3
    9 sg:pub.10.1007/978-3-319-21275-3
    10 sg:pub.10.1007/978-3-540-74208-1_5
    11 sg:pub.10.1007/978-3-642-54423-1_25
    12 sg:pub.10.1007/978-3-662-12494-9
    13 sg:pub.10.1007/bf02783040
    14 sg:pub.10.1007/s00453-007-9055-0
    15 sg:pub.10.1007/s00453-010-9478-x
    16 sg:pub.10.1007/s00453-017-0291-7
    17 sg:pub.10.1007/s00454-002-0743-x
    18 sg:pub.10.1007/s00454-019-00107-9
    19 sg:pub.10.1007/s10115-016-0987-z
    20 sg:pub.10.1007/s10772-011-9116-2
    21 sg:pub.10.1007/s40484-019-0186-5
    22 sg:pub.10.1023/b:amhu.0000028240.16521.9d
    23 sg:pub.10.1038/nphys209
    24 sg:pub.10.1038/s41598-018-27001-3
    25 sg:pub.10.1155/2008/213185
    26 schema:datePublished 2020-01-22
    27 schema:datePublishedReg 2020-01-22
    28 schema:description Anomaly detection problems (also called change-point detection problems) have been studied in data mining, statistics and computer science over the last several decades (mostly in non-network context) in applications such as medical condition monitoring, weather change detection and speech recognition. In recent days, however, anomaly detection problems have become increasing more relevant in the context of network science since useful insights for many complex systems in biology, finance and social science are often obtained by representing them via networks. Notions of local and non-local curvatures of higher-dimensional geometric shapes and topological spaces play a fundamental role in physics and mathematics in characterizing anomalous behaviours of these higher dimensional entities. However, using curvature measures to detect anomalies in networks is not yet very common. To this end, a main goal in this paper to formulate and analyze curvature analysis methods to provide the foundations of systematic approaches to find critical components and detect anomalies in networks. For this purpose, we use two measures of network curvatures which depend on non-trivial global properties, such as distributions of geodesics and higher-order correlations among nodes, of the given network. Based on these measures, we precisely formulate several computational problems related to anomaly detection in static or dynamic networks, and provide non-trivial computational complexity results for these problems. This paper must not be viewed as delivering the final word on appropriateness and suitability of specific curvature measures. Instead, it is our hope that this paper will stimulate and motivate further theoretical or empirical research concerning the exciting interplay between notions of curvatures from network and non-network domains, a much desired goal in our opinion.
    29 schema:genre article
    30 schema:inLanguage en
    31 schema:isAccessibleForFree true
    32 schema:isPartOf N96c91593e6a34ec1a5927863eaae8605
    33 Ndb1d7a7a8ba243ef86234ba0e57c1f88
    34 sg:journal.1047644
    35 schema:keywords analysis method
    36 anomalies
    37 anomalous behavior
    38 anomaly detection
    39 anomaly detection problem
    40 applications
    41 approach
    42 appropriateness
    43 behavior
    44 biology
    45 change detection
    46 changes
    47 complex systems
    48 complexity
    49 components
    50 computational complexity
    51 computational problems
    52 computer science
    53 condition monitoring
    54 context
    55 correlation
    56 critical component
    57 curvature
    58 curvature analysis method
    59 curvature measures
    60 data mining
    61 days
    62 decades
    63 detection
    64 detection problem
    65 dimensional entity
    66 distribution
    67 domain
    68 dynamic networks
    69 empirical research
    70 end
    71 entities
    72 exciting interplay
    73 final word
    74 finance
    75 foundation
    76 fundamental role
    77 geodesics
    78 geometric shapes
    79 global properties
    80 goal
    81 higher-dimensional entities
    82 higher-order correlations
    83 hope
    84 insights
    85 interplay
    86 main goal
    87 mathematics
    88 measures
    89 medical condition monitoring
    90 method
    91 mining
    92 monitoring
    93 network
    94 network changes
    95 network curvature
    96 network science
    97 nodes
    98 notion
    99 notion of curvature
    100 opinion
    101 paper
    102 physics
    103 problem
    104 properties
    105 purpose
    106 recent days
    107 recognition
    108 research
    109 role
    110 science
    111 shape
    112 social sciences
    113 space
    114 speech recognition
    115 statistics
    116 suitability
    117 system
    118 systematic approach
    119 topological spaces
    120 useful insights
    121 words
    122 schema:name Why Did the Shape of Your Network Change? (On Detecting Network Anomalies via Non-local Curvatures)
    123 schema:pagination 1741-1783
    124 schema:productId N0915dc4cacf14408a74b70f8c2aa03e5
    125 Na8fcf161f5d74fd99e97d1028f106c1d
    126 schema:sameAs https://app.dimensions.ai/details/publication/pub.1124231456
    127 https://doi.org/10.1007/s00453-019-00665-7
    128 schema:sdDatePublished 2022-05-20T07:37
    129 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    130 schema:sdPublisher N1fb11b72e5374e96931bb4a5c83e5be6
    131 schema:url https://doi.org/10.1007/s00453-019-00665-7
    132 sgo:license sg:explorer/license/
    133 sgo:sdDataset articles
    134 rdf:type schema:ScholarlyArticle
    135 N042de71d29d34cd8a7b322fcb9ed8eb9 rdf:first sg:person.0763403270.10
    136 rdf:rest Ncbff74448e56497381f67521d171d5b0
    137 N0915dc4cacf14408a74b70f8c2aa03e5 schema:name doi
    138 schema:value 10.1007/s00453-019-00665-7
    139 rdf:type schema:PropertyValue
    140 N1fb11b72e5374e96931bb4a5c83e5be6 schema:name Springer Nature - SN SciGraph project
    141 rdf:type schema:Organization
    142 N96c91593e6a34ec1a5927863eaae8605 schema:volumeNumber 82
    143 rdf:type schema:PublicationVolume
    144 Na8fcf161f5d74fd99e97d1028f106c1d schema:name dimensions_id
    145 schema:value pub.1124231456
    146 rdf:type schema:PropertyValue
    147 Nc934a04dd68d475ba880e78c7b03f7a7 rdf:first sg:person.012577157437.32
    148 rdf:rest rdf:nil
    149 Ncbff74448e56497381f67521d171d5b0 rdf:first sg:person.010203051363.32
    150 rdf:rest Nc934a04dd68d475ba880e78c7b03f7a7
    151 Ndb1d7a7a8ba243ef86234ba0e57c1f88 schema:issueNumber 7
    152 rdf:type schema:PublicationIssue
    153 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    154 schema:name Mathematical Sciences
    155 rdf:type schema:DefinedTerm
    156 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    157 schema:name Pure Mathematics
    158 rdf:type schema:DefinedTerm
    159 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    160 schema:name Information and Computing Sciences
    161 rdf:type schema:DefinedTerm
    162 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    163 schema:name Artificial Intelligence and Image Processing
    164 rdf:type schema:DefinedTerm
    165 sg:grant.3135580 http://pending.schema.org/fundedItem sg:pub.10.1007/s00453-019-00665-7
    166 rdf:type schema:MonetaryGrant
    167 sg:grant.7704338 http://pending.schema.org/fundedItem sg:pub.10.1007/s00453-019-00665-7
    168 rdf:type schema:MonetaryGrant
    169 sg:journal.1047644 schema:issn 0178-4617
    170 1432-0541
    171 schema:name Algorithmica
    172 schema:publisher Springer Nature
    173 rdf:type schema:Periodical
    174 sg:person.010203051363.32 schema:affiliation grid-institutes:grid.185648.6
    175 schema:familyName Janardhanan
    176 schema:givenName Mano Vikash
    177 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010203051363.32
    178 rdf:type schema:Person
    179 sg:person.012577157437.32 schema:affiliation grid-institutes:grid.185648.6
    180 schema:familyName Yahyanejad
    181 schema:givenName Farzane
    182 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012577157437.32
    183 rdf:type schema:Person
    184 sg:person.0763403270.10 schema:affiliation grid-institutes:grid.185648.6
    185 schema:familyName DasGupta
    186 schema:givenName Bhaskar
    187 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0763403270.10
    188 rdf:type schema:Person
    189 sg:pub.10.1007/11602613_106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026406190
    190 https://doi.org/10.1007/11602613_106
    191 rdf:type schema:CreativeWork
    192 sg:pub.10.1007/3-540-36478-1_17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026956598
    193 https://doi.org/10.1007/3-540-36478-1_17
    194 rdf:type schema:CreativeWork
    195 sg:pub.10.1007/978-1-4613-9586-7_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038753055
    196 https://doi.org/10.1007/978-1-4613-9586-7_3
    197 rdf:type schema:CreativeWork
    198 sg:pub.10.1007/978-3-319-21275-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004947649
    199 https://doi.org/10.1007/978-3-319-21275-3
    200 rdf:type schema:CreativeWork
    201 sg:pub.10.1007/978-3-540-74208-1_5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032702066
    202 https://doi.org/10.1007/978-3-540-74208-1_5
    203 rdf:type schema:CreativeWork
    204 sg:pub.10.1007/978-3-642-54423-1_25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024407756
    205 https://doi.org/10.1007/978-3-642-54423-1_25
    206 rdf:type schema:CreativeWork
    207 sg:pub.10.1007/978-3-662-12494-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018384993
    208 https://doi.org/10.1007/978-3-662-12494-9
    209 rdf:type schema:CreativeWork
    210 sg:pub.10.1007/bf02783040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034381686
    211 https://doi.org/10.1007/bf02783040
    212 rdf:type schema:CreativeWork
    213 sg:pub.10.1007/s00453-007-9055-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026603604
    214 https://doi.org/10.1007/s00453-007-9055-0
    215 rdf:type schema:CreativeWork
    216 sg:pub.10.1007/s00453-010-9478-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1047593355
    217 https://doi.org/10.1007/s00453-010-9478-x
    218 rdf:type schema:CreativeWork
    219 sg:pub.10.1007/s00453-017-0291-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083911729
    220 https://doi.org/10.1007/s00453-017-0291-7
    221 rdf:type schema:CreativeWork
    222 sg:pub.10.1007/s00454-002-0743-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1010231584
    223 https://doi.org/10.1007/s00454-002-0743-x
    224 rdf:type schema:CreativeWork
    225 sg:pub.10.1007/s00454-019-00107-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1116644907
    226 https://doi.org/10.1007/s00454-019-00107-9
    227 rdf:type schema:CreativeWork
    228 sg:pub.10.1007/s10115-016-0987-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1053043091
    229 https://doi.org/10.1007/s10115-016-0987-z
    230 rdf:type schema:CreativeWork
    231 sg:pub.10.1007/s10772-011-9116-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027135347
    232 https://doi.org/10.1007/s10772-011-9116-2
    233 rdf:type schema:CreativeWork
    234 sg:pub.10.1007/s40484-019-0186-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1123440096
    235 https://doi.org/10.1007/s40484-019-0186-5
    236 rdf:type schema:CreativeWork
    237 sg:pub.10.1023/b:amhu.0000028240.16521.9d schema:sameAs https://app.dimensions.ai/details/publication/pub.1003152551
    238 https://doi.org/10.1023/b:amhu.0000028240.16521.9d
    239 rdf:type schema:CreativeWork
    240 sg:pub.10.1038/nphys209 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018047307
    241 https://doi.org/10.1038/nphys209
    242 rdf:type schema:CreativeWork
    243 sg:pub.10.1038/s41598-018-27001-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104316461
    244 https://doi.org/10.1038/s41598-018-27001-3
    245 rdf:type schema:CreativeWork
    246 sg:pub.10.1155/2008/213185 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014245856
    247 https://doi.org/10.1155/2008/213185
    248 rdf:type schema:CreativeWork
    249 grid-institutes:grid.185648.6 schema:alternateName Department of Computer Science, University of Illinois at Chicago, 60607, Chicago, IL, USA
    250 Department of Mathematics, University of Illinois at Chicago, 60607, Chicago, IL, USA
    251 schema:name Department of Computer Science, University of Illinois at Chicago, 60607, Chicago, IL, USA
    252 Department of Mathematics, University of Illinois at Chicago, 60607, Chicago, IL, USA
    253 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...