Solving Problems with Unknown Solution Length at Almost No Extra Cost View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-02

AUTHORS

Benjamin Doerr, Carola Doerr, Timo Kötzing

ABSTRACT

Following up on previous work of Cathabard et al. (in: Proceedings of foundations of genetic algorithms (FOGA’11), ACM, 2011) we analyze variants of the (1 + 1) evolutionary algorithm (EA) for problems with unknown solution length. For their setting, in which the solution length is sampled from a geometric distribution, we provide mutation rates that yield for both benchmark functions OneMax and LeadingOnes an expected optimization time that is of the same order as that of the (1 + 1) EA knowing the solution length. More than this, we show that almost the same run times can be achieved even if no a priori information on the solution length is available. We also regard the situation in which neither the number nor the positions of the bits with an influence on the fitness function are known. Solving an open problem from Cathabard et al. we show that, for arbitrary s∈N, such OneMax and LeadingOnes instances can be solved, simultaneously for all n∈N, in expected time O(n(log(n))2loglog(n)…log(s-1)(n)(log(s)(n))1+ε) and O(n2log(n)loglog(n)…log(s-1)(n)(log(s)(n))1+ε), respectively; that is, in almost the same time as if n and the relevant bit positions were known. For the LeadingOnes case, we prove lower bounds of same asymptotic order of magnitude apart from the (log(s)(n))ε factor. Aiming at closing this arbitrarily small remaining gap, we realize that there is no asymptotically best performance for this problem. For any algorithm solving, for all n, all instances of size n in expected time at most T(n), there is an algorithm doing the same in time T′(n) with T′=o(T). For OneMax we show results of similar flavor. More... »

PAGES

1-46

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00453-018-0477-7

DOI

http://dx.doi.org/10.1007/s00453-018-0477-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1105292896


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "\u00c9cole Polytechnique", 
          "id": "https://www.grid.ac/institutes/grid.10877.39", 
          "name": [
            "\u00c9cole Polytechnique, CNRS, LIX - UMR 7161, 91120, Palaiseau, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Doerr", 
        "givenName": "Benjamin", 
        "id": "sg:person.01327223002.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01327223002.89"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "French National Centre for Scientific Research", 
          "id": "https://www.grid.ac/institutes/grid.4444.0", 
          "name": [
            "Sorbonne Universit\u00e9, CNRS, LIP6, 75005, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Doerr", 
        "givenName": "Carola", 
        "id": "sg:person.010360414373.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010360414373.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Hasso-Plattner-Institut, Prof.-Dr.-Helmert-Str. 2-3, 14482, Potsdam, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "K\u00f6tzing", 
        "givenName": "Timo", 
        "id": "sg:person.014204051473.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014204051473.89"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-642-15844-5_1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000452291", 
          "https://doi.org/10.1007/978-3-642-15844-5_1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1830483.1830749", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002083672"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/evco.2006.14.1.65", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007247512"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2001576.2001856", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008768215"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/106365605774666921", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009924382"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-17339-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012726107", 
          "https://doi.org/10.1007/978-3-642-17339-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-17339-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012726107", 
          "https://doi.org/10.1007/978-3-642-17339-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0963548309990599", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017811806"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00453-012-9622-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017937785", 
          "https://doi.org/10.1007/s00453-012-9622-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ins.2010.01.031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019173014"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0304-3975(01)00182-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019717336"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0963548312000600", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020245943"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11047-008-9098-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022748097", 
          "https://doi.org/10.1007/s11047-008-9098-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1967654.1967670", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027103708"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tcs.2014.03.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027494834"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2463372.2463565", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038129404"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2908812.2908891", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040036399"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tevc.2005.846356", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061604671"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tevc.2005.846356", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061604671"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tevc.2012.2202241", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061605104"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1239/jap/1110381369", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064441978"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/evco_a_00212", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086115091"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/3071178.3071301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090597307"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/3071178.3071233", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090616000"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00453-017-0354-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091088346", 
          "https://doi.org/10.1007/s00453-017-0354-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00453-017-0354-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091088346", 
          "https://doi.org/10.1007/s00453-017-0354-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1098841922", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/07468342.1997.11973879", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100713554"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-02", 
    "datePublishedReg": "2019-02-01", 
    "description": "Following up on previous work of Cathabard et al. (in: Proceedings of foundations of genetic algorithms (FOGA\u201911), ACM, 2011) we analyze variants of the (1 + 1) evolutionary algorithm (EA) for problems with unknown solution length. For their setting, in which the solution length is sampled from a geometric distribution, we provide mutation rates that yield for both benchmark functions OneMax and LeadingOnes an expected optimization time that is of the same order as that of the (1 + 1) EA knowing the solution length. More than this, we show that almost the same run times can be achieved even if no a priori information on the solution length is available. We also regard the situation in which neither the number nor the positions of the bits with an influence on the fitness function are known. Solving an open problem from Cathabard et al. we show that, for arbitrary s\u2208N, such OneMax and LeadingOnes instances can be solved, simultaneously for all n\u2208N, in expected time O(n(log(n))2loglog(n)\u2026log(s-1)(n)(log(s)(n))1+\u03b5) and O(n2log(n)loglog(n)\u2026log(s-1)(n)(log(s)(n))1+\u03b5), respectively; that is, in almost the same time as if n and the relevant bit positions were known. For the LeadingOnes case, we prove lower bounds of same asymptotic order of magnitude apart from the (log(s)(n))\u03b5 factor. Aiming at closing this arbitrarily small remaining gap, we realize that there is no asymptotically best performance for this problem. For any algorithm solving, for all n, all instances of size n in expected time at most T(n), there is an algorithm doing the same in time T\u2032(n) with T\u2032=o(T). For OneMax we show results of similar flavor.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00453-018-0477-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1047644", 
        "issn": [
          "0178-4617", 
          "1432-0541"
        ], 
        "name": "Algorithmica", 
        "type": "Periodical"
      }
    ], 
    "name": "Solving Problems with Unknown Solution Length at Almost No Extra Cost", 
    "pagination": "1-46", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "546aca6c8fa58f2e13524b213c2f56bd766041123862ef9b3ab20ca65a1ca243"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00453-018-0477-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1105292896"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00453-018-0477-7", 
      "https://app.dimensions.ai/details/publication/pub.1105292896"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T15:15", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000604.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s00453-018-0477-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00453-018-0477-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00453-018-0477-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00453-018-0477-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00453-018-0477-7'


 

This table displays all metadata directly associated to this object as RDF triples.

153 TRIPLES      21 PREDICATES      50 URIs      17 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00453-018-0477-7 schema:about anzsrc-for:01
2 anzsrc-for:0103
3 schema:author Ne2838c07eedc4df4bf7a4e959d0a1ab2
4 schema:citation sg:pub.10.1007/978-3-642-15844-5_1
5 sg:pub.10.1007/978-3-642-17339-4
6 sg:pub.10.1007/s00453-012-9622-x
7 sg:pub.10.1007/s00453-017-0354-9
8 sg:pub.10.1007/s11047-008-9098-4
9 https://app.dimensions.ai/details/publication/pub.1098841922
10 https://doi.org/10.1016/j.ins.2010.01.031
11 https://doi.org/10.1016/j.tcs.2014.03.015
12 https://doi.org/10.1016/s0304-3975(01)00182-7
13 https://doi.org/10.1017/s0963548309990599
14 https://doi.org/10.1017/s0963548312000600
15 https://doi.org/10.1080/07468342.1997.11973879
16 https://doi.org/10.1109/tevc.2005.846356
17 https://doi.org/10.1109/tevc.2012.2202241
18 https://doi.org/10.1145/1830483.1830749
19 https://doi.org/10.1145/1967654.1967670
20 https://doi.org/10.1145/2001576.2001856
21 https://doi.org/10.1145/2463372.2463565
22 https://doi.org/10.1145/2908812.2908891
23 https://doi.org/10.1145/3071178.3071233
24 https://doi.org/10.1145/3071178.3071301
25 https://doi.org/10.1162/106365605774666921
26 https://doi.org/10.1162/evco.2006.14.1.65
27 https://doi.org/10.1162/evco_a_00212
28 https://doi.org/10.1239/jap/1110381369
29 schema:datePublished 2019-02
30 schema:datePublishedReg 2019-02-01
31 schema:description Following up on previous work of Cathabard et al. (in: Proceedings of foundations of genetic algorithms (FOGA’11), ACM, 2011) we analyze variants of the (1 + 1) evolutionary algorithm (EA) for problems with unknown solution length. For their setting, in which the solution length is sampled from a geometric distribution, we provide mutation rates that yield for both benchmark functions OneMax and LeadingOnes an expected optimization time that is of the same order as that of the (1 + 1) EA knowing the solution length. More than this, we show that almost the same run times can be achieved even if no a priori information on the solution length is available. We also regard the situation in which neither the number nor the positions of the bits with an influence on the fitness function are known. Solving an open problem from Cathabard et al. we show that, for arbitrary s∈N, such OneMax and LeadingOnes instances can be solved, simultaneously for all n∈N, in expected time O(n(log(n))2loglog(n)…log(s-1)(n)(log(s)(n))1+ε) and O(n2log(n)loglog(n)…log(s-1)(n)(log(s)(n))1+ε), respectively; that is, in almost the same time as if n and the relevant bit positions were known. For the LeadingOnes case, we prove lower bounds of same asymptotic order of magnitude apart from the (log(s)(n))ε factor. Aiming at closing this arbitrarily small remaining gap, we realize that there is no asymptotically best performance for this problem. For any algorithm solving, for all n, all instances of size n in expected time at most T(n), there is an algorithm doing the same in time T′(n) with T′=o(T). For OneMax we show results of similar flavor.
32 schema:genre research_article
33 schema:inLanguage en
34 schema:isAccessibleForFree true
35 schema:isPartOf sg:journal.1047644
36 schema:name Solving Problems with Unknown Solution Length at Almost No Extra Cost
37 schema:pagination 1-46
38 schema:productId N10580eb1cfde4945bf0b74395b6d0b33
39 N14b7424e54e0474aa49550d4f7620274
40 N9500bdfa82db49d682bf160d5267ca2c
41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105292896
42 https://doi.org/10.1007/s00453-018-0477-7
43 schema:sdDatePublished 2019-04-10T15:15
44 schema:sdLicense https://scigraph.springernature.com/explorer/license/
45 schema:sdPublisher Necf496610d1949d5b2ec3db7998610dd
46 schema:url http://link.springer.com/10.1007/s00453-018-0477-7
47 sgo:license sg:explorer/license/
48 sgo:sdDataset articles
49 rdf:type schema:ScholarlyArticle
50 N10580eb1cfde4945bf0b74395b6d0b33 schema:name dimensions_id
51 schema:value pub.1105292896
52 rdf:type schema:PropertyValue
53 N14b7424e54e0474aa49550d4f7620274 schema:name doi
54 schema:value 10.1007/s00453-018-0477-7
55 rdf:type schema:PropertyValue
56 N5910408880984b81b19acc59d2fd33fe rdf:first sg:person.010360414373.45
57 rdf:rest N69c64555559f470da27965ed8e5e0b0e
58 N69c64555559f470da27965ed8e5e0b0e rdf:first sg:person.014204051473.89
59 rdf:rest rdf:nil
60 N9500bdfa82db49d682bf160d5267ca2c schema:name readcube_id
61 schema:value 546aca6c8fa58f2e13524b213c2f56bd766041123862ef9b3ab20ca65a1ca243
62 rdf:type schema:PropertyValue
63 Ne2838c07eedc4df4bf7a4e959d0a1ab2 rdf:first sg:person.01327223002.89
64 rdf:rest N5910408880984b81b19acc59d2fd33fe
65 Nec7cde36cb4b41de9d08556e40ee8ec5 schema:name Hasso-Plattner-Institut, Prof.-Dr.-Helmert-Str. 2-3, 14482, Potsdam, Germany
66 rdf:type schema:Organization
67 Necf496610d1949d5b2ec3db7998610dd schema:name Springer Nature - SN SciGraph project
68 rdf:type schema:Organization
69 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
70 schema:name Mathematical Sciences
71 rdf:type schema:DefinedTerm
72 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
73 schema:name Numerical and Computational Mathematics
74 rdf:type schema:DefinedTerm
75 sg:journal.1047644 schema:issn 0178-4617
76 1432-0541
77 schema:name Algorithmica
78 rdf:type schema:Periodical
79 sg:person.010360414373.45 schema:affiliation https://www.grid.ac/institutes/grid.4444.0
80 schema:familyName Doerr
81 schema:givenName Carola
82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010360414373.45
83 rdf:type schema:Person
84 sg:person.01327223002.89 schema:affiliation https://www.grid.ac/institutes/grid.10877.39
85 schema:familyName Doerr
86 schema:givenName Benjamin
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01327223002.89
88 rdf:type schema:Person
89 sg:person.014204051473.89 schema:affiliation Nec7cde36cb4b41de9d08556e40ee8ec5
90 schema:familyName Kötzing
91 schema:givenName Timo
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014204051473.89
93 rdf:type schema:Person
94 sg:pub.10.1007/978-3-642-15844-5_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000452291
95 https://doi.org/10.1007/978-3-642-15844-5_1
96 rdf:type schema:CreativeWork
97 sg:pub.10.1007/978-3-642-17339-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012726107
98 https://doi.org/10.1007/978-3-642-17339-4
99 rdf:type schema:CreativeWork
100 sg:pub.10.1007/s00453-012-9622-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1017937785
101 https://doi.org/10.1007/s00453-012-9622-x
102 rdf:type schema:CreativeWork
103 sg:pub.10.1007/s00453-017-0354-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091088346
104 https://doi.org/10.1007/s00453-017-0354-9
105 rdf:type schema:CreativeWork
106 sg:pub.10.1007/s11047-008-9098-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022748097
107 https://doi.org/10.1007/s11047-008-9098-4
108 rdf:type schema:CreativeWork
109 https://app.dimensions.ai/details/publication/pub.1098841922 schema:CreativeWork
110 https://doi.org/10.1016/j.ins.2010.01.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019173014
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1016/j.tcs.2014.03.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027494834
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1016/s0304-3975(01)00182-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019717336
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1017/s0963548309990599 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017811806
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1017/s0963548312000600 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020245943
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1080/07468342.1997.11973879 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100713554
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1109/tevc.2005.846356 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061604671
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1109/tevc.2012.2202241 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061605104
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1145/1830483.1830749 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002083672
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1145/1967654.1967670 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027103708
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1145/2001576.2001856 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008768215
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1145/2463372.2463565 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038129404
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1145/2908812.2908891 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040036399
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1145/3071178.3071233 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090616000
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1145/3071178.3071301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090597307
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1162/106365605774666921 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009924382
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1162/evco.2006.14.1.65 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007247512
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1162/evco_a_00212 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086115091
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1239/jap/1110381369 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064441978
147 rdf:type schema:CreativeWork
148 https://www.grid.ac/institutes/grid.10877.39 schema:alternateName École Polytechnique
149 schema:name École Polytechnique, CNRS, LIX - UMR 7161, 91120, Palaiseau, France
150 rdf:type schema:Organization
151 https://www.grid.ac/institutes/grid.4444.0 schema:alternateName French National Centre for Scientific Research
152 schema:name Sorbonne Université, CNRS, LIP6, 75005, Paris, France
153 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...