Fault-Tolerant Approximate Shortest-Path Trees View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

Davide Bilò, Luciano Gualà, Stefano Leucci, Guido Proietti

ABSTRACT

The resiliency of a network is its ability to remain effectively functioning also when any of its nodes or links fails. However, to reduce operational and set-up costs, a network should be small in size, and this conflicts with the requirement of being resilient. In this paper we address this trade-off for the prominent case of the broadcasting routing scheme, and we build efficient (i.e., sparse and fast) fault-tolerant approximate shortest-path trees, for both the edge and vertex single-failure case. In particular, for an n-vertex non-negatively weighted graph, and for any constant ε>0, we design two structures of size Onlognε2 which guarantee (1+ε)-stretched paths from the selected source also in the presence of an edge/vertex failure. This favorably compares with the currently best known solutions, which are for the edge-failure case of size O(n) and stretch factor 3, and for the vertex-failure case of size O(nlogn) and stretch factor 3. Moreover, we also focus on the unweighted case, and we prove that an ordinary spanner can be slightly augmented in order to build efficient fault-tolerant approximate breadth-first-search trees. More... »

PAGES

3437-3460

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00453-017-0396-z

DOI

http://dx.doi.org/10.1007/s00453-017-0396-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1092712981


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1005", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Communications Technologies", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/10", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Technology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Sassari", 
          "id": "https://www.grid.ac/institutes/grid.11450.31", 
          "name": [
            "Dipartimento di Scienze Umanistiche e Sociali, Universit\u00e0 di Sassari, Sassari, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bil\u00f2", 
        "givenName": "Davide", 
        "id": "sg:person.010426216501.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010426216501.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Rome Tor Vergata", 
          "id": "https://www.grid.ac/institutes/grid.6530.0", 
          "name": [
            "Dipartimento di Ingegneria dell\u2019Impresa, Universit\u00e0 di Roma \u201cTor Vergata\u201d, Rome, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gual\u00e0", 
        "givenName": "Luciano", 
        "id": "sg:person.012616540101.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012616540101.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Swiss Federal Institute of Technology in Zurich", 
          "id": "https://www.grid.ac/institutes/grid.5801.c", 
          "name": [
            "Department of Computer Science, ETH Z\u00fcrich, Z\u00fcrich, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Leucci", 
        "givenName": "Stefano", 
        "id": "sg:person.010027421073.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010027421073.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Istituto di Analisi dei Sistemi ed Informatica Antonio Ruberti", 
          "id": "https://www.grid.ac/institutes/grid.419461.f", 
          "name": [
            "Dipartimento di Ingegneria e Scienze dell\u2019Informazione e Matematica, Universit\u00e0 degli Studi dell\u2019Aquila, L\u2019Aquila, Italy", 
            "Istituto di Analisi dei Sistemi ed Informatica, CNR, Rome, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Proietti", 
        "givenName": "Guido", 
        "id": "sg:person.015510625760.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015510625760.85"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1145/1536414.1536475", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001385130"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2767386.2767408", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006837839"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02189308", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012559153", 
          "https://doi.org/10.1007/bf02189308"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02189308", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012559153", 
          "https://doi.org/10.1007/bf02189308"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-40450-4_66", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019763817", 
          "https://doi.org/10.1007/978-3-642-40450-4_66"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0304-3975(02)00438-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023988584"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0304-3975(02)00438-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023988584"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1536414.1536431", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025654406"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1993806.1993830", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036586132"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-48350-3_15", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041941277", 
          "https://doi.org/10.1007/978-3-662-48350-3_15"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1868237.1868242", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042294846"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00453-003-1024-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049469680", 
          "https://doi.org/10.1007/s00453-003-1024-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00453-012-9621-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050047409", 
          "https://doi.org/10.1007/s00453-012-9621-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-34611-8_22", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052616550", 
          "https://doi.org/10.1007/978-3-642-34611-8_22"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s0097539705429847", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062879588"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s1793830910000905", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063025165"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/1.9781611973068.56", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1088801102"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/1.9781611973402.80", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1088801907"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/focs.2012.17", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094401942"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "The resiliency of a network is its ability to remain effectively functioning also when any of its nodes or links fails. However, to reduce operational and set-up costs, a network should be small in size, and this conflicts with the requirement of being resilient. In this paper we address this trade-off for the prominent case of the broadcasting routing scheme, and we build efficient (i.e., sparse and fast) fault-tolerant approximate shortest-path trees, for both the edge and vertex single-failure case. In particular, for an n-vertex non-negatively weighted graph, and for any constant \u03b5>0, we design two structures of size Onlogn\u03b52 which guarantee (1+\u03b5)-stretched paths from the selected source also in the presence of an edge/vertex failure. This favorably compares with the currently best known solutions, which are for the edge-failure case of size O(n) and stretch factor 3, and for the vertex-failure case of size O(nlogn) and stretch factor 3. Moreover, we also focus on the unweighted case, and we prove that an ordinary spanner can be slightly augmented in order to build efficient fault-tolerant approximate breadth-first-search trees.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00453-017-0396-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1047644", 
        "issn": [
          "0178-4617", 
          "1432-0541"
        ], 
        "name": "Algorithmica", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "12", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "80"
      }
    ], 
    "name": "Fault-Tolerant Approximate Shortest-Path Trees", 
    "pagination": "3437-3460", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "fb076424806d9ab608677c9f1704e37866dc49799c7aaed8131b48501ac2fd6d"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00453-017-0396-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1092712981"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00453-017-0396-z", 
      "https://app.dimensions.ai/details/publication/pub.1092712981"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:16", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000562.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00453-017-0396-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00453-017-0396-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00453-017-0396-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00453-017-0396-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00453-017-0396-z'


 

This table displays all metadata directly associated to this object as RDF triples.

149 TRIPLES      21 PREDICATES      44 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00453-017-0396-z schema:about anzsrc-for:10
2 anzsrc-for:1005
3 schema:author N7a39ba49e5ee4b0781ea24440fd4575e
4 schema:citation sg:pub.10.1007/978-3-642-34611-8_22
5 sg:pub.10.1007/978-3-642-40450-4_66
6 sg:pub.10.1007/978-3-662-48350-3_15
7 sg:pub.10.1007/bf02189308
8 sg:pub.10.1007/s00453-003-1024-7
9 sg:pub.10.1007/s00453-012-9621-y
10 https://doi.org/10.1016/s0304-3975(02)00438-3
11 https://doi.org/10.1109/focs.2012.17
12 https://doi.org/10.1137/1.9781611973068.56
13 https://doi.org/10.1137/1.9781611973402.80
14 https://doi.org/10.1137/s0097539705429847
15 https://doi.org/10.1142/s1793830910000905
16 https://doi.org/10.1145/1536414.1536431
17 https://doi.org/10.1145/1536414.1536475
18 https://doi.org/10.1145/1868237.1868242
19 https://doi.org/10.1145/1993806.1993830
20 https://doi.org/10.1145/2767386.2767408
21 schema:datePublished 2018-12
22 schema:datePublishedReg 2018-12-01
23 schema:description The resiliency of a network is its ability to remain effectively functioning also when any of its nodes or links fails. However, to reduce operational and set-up costs, a network should be small in size, and this conflicts with the requirement of being resilient. In this paper we address this trade-off for the prominent case of the broadcasting routing scheme, and we build efficient (i.e., sparse and fast) fault-tolerant approximate shortest-path trees, for both the edge and vertex single-failure case. In particular, for an n-vertex non-negatively weighted graph, and for any constant ε>0, we design two structures of size Onlognε2 which guarantee (1+ε)-stretched paths from the selected source also in the presence of an edge/vertex failure. This favorably compares with the currently best known solutions, which are for the edge-failure case of size O(n) and stretch factor 3, and for the vertex-failure case of size O(nlogn) and stretch factor 3. Moreover, we also focus on the unweighted case, and we prove that an ordinary spanner can be slightly augmented in order to build efficient fault-tolerant approximate breadth-first-search trees.
24 schema:genre research_article
25 schema:inLanguage en
26 schema:isAccessibleForFree true
27 schema:isPartOf N4be91a4987544e2c8ff907324279fbc6
28 Nb19b7eaa8aa04839b87185f85e630e62
29 sg:journal.1047644
30 schema:name Fault-Tolerant Approximate Shortest-Path Trees
31 schema:pagination 3437-3460
32 schema:productId N91cc675f9a5049f7b760a68902c0e68d
33 Nbc12f446154e43c98034ebdb97d150dc
34 Ncc2814cb9f1c4629ba5b6f5c4c23795e
35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092712981
36 https://doi.org/10.1007/s00453-017-0396-z
37 schema:sdDatePublished 2019-04-10T19:16
38 schema:sdLicense https://scigraph.springernature.com/explorer/license/
39 schema:sdPublisher N8e10a1b0258349dabe5a1729d3266045
40 schema:url https://link.springer.com/10.1007%2Fs00453-017-0396-z
41 sgo:license sg:explorer/license/
42 sgo:sdDataset articles
43 rdf:type schema:ScholarlyArticle
44 N21d4b8c75eac47319f936d2448412a2e rdf:first sg:person.010027421073.44
45 rdf:rest Nda78d3b611a34063bf3bc9e45938f711
46 N4be91a4987544e2c8ff907324279fbc6 schema:issueNumber 12
47 rdf:type schema:PublicationIssue
48 N73d57cfe405b4918af34b4b7c36482d3 rdf:first sg:person.012616540101.45
49 rdf:rest N21d4b8c75eac47319f936d2448412a2e
50 N7a39ba49e5ee4b0781ea24440fd4575e rdf:first sg:person.010426216501.26
51 rdf:rest N73d57cfe405b4918af34b4b7c36482d3
52 N8e10a1b0258349dabe5a1729d3266045 schema:name Springer Nature - SN SciGraph project
53 rdf:type schema:Organization
54 N91cc675f9a5049f7b760a68902c0e68d schema:name doi
55 schema:value 10.1007/s00453-017-0396-z
56 rdf:type schema:PropertyValue
57 Nb19b7eaa8aa04839b87185f85e630e62 schema:volumeNumber 80
58 rdf:type schema:PublicationVolume
59 Nbc12f446154e43c98034ebdb97d150dc schema:name readcube_id
60 schema:value fb076424806d9ab608677c9f1704e37866dc49799c7aaed8131b48501ac2fd6d
61 rdf:type schema:PropertyValue
62 Ncc2814cb9f1c4629ba5b6f5c4c23795e schema:name dimensions_id
63 schema:value pub.1092712981
64 rdf:type schema:PropertyValue
65 Nda78d3b611a34063bf3bc9e45938f711 rdf:first sg:person.015510625760.85
66 rdf:rest rdf:nil
67 anzsrc-for:10 schema:inDefinedTermSet anzsrc-for:
68 schema:name Technology
69 rdf:type schema:DefinedTerm
70 anzsrc-for:1005 schema:inDefinedTermSet anzsrc-for:
71 schema:name Communications Technologies
72 rdf:type schema:DefinedTerm
73 sg:journal.1047644 schema:issn 0178-4617
74 1432-0541
75 schema:name Algorithmica
76 rdf:type schema:Periodical
77 sg:person.010027421073.44 schema:affiliation https://www.grid.ac/institutes/grid.5801.c
78 schema:familyName Leucci
79 schema:givenName Stefano
80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010027421073.44
81 rdf:type schema:Person
82 sg:person.010426216501.26 schema:affiliation https://www.grid.ac/institutes/grid.11450.31
83 schema:familyName Bilò
84 schema:givenName Davide
85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010426216501.26
86 rdf:type schema:Person
87 sg:person.012616540101.45 schema:affiliation https://www.grid.ac/institutes/grid.6530.0
88 schema:familyName Gualà
89 schema:givenName Luciano
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012616540101.45
91 rdf:type schema:Person
92 sg:person.015510625760.85 schema:affiliation https://www.grid.ac/institutes/grid.419461.f
93 schema:familyName Proietti
94 schema:givenName Guido
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015510625760.85
96 rdf:type schema:Person
97 sg:pub.10.1007/978-3-642-34611-8_22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052616550
98 https://doi.org/10.1007/978-3-642-34611-8_22
99 rdf:type schema:CreativeWork
100 sg:pub.10.1007/978-3-642-40450-4_66 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019763817
101 https://doi.org/10.1007/978-3-642-40450-4_66
102 rdf:type schema:CreativeWork
103 sg:pub.10.1007/978-3-662-48350-3_15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041941277
104 https://doi.org/10.1007/978-3-662-48350-3_15
105 rdf:type schema:CreativeWork
106 sg:pub.10.1007/bf02189308 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012559153
107 https://doi.org/10.1007/bf02189308
108 rdf:type schema:CreativeWork
109 sg:pub.10.1007/s00453-003-1024-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049469680
110 https://doi.org/10.1007/s00453-003-1024-7
111 rdf:type schema:CreativeWork
112 sg:pub.10.1007/s00453-012-9621-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1050047409
113 https://doi.org/10.1007/s00453-012-9621-y
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1016/s0304-3975(02)00438-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023988584
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1109/focs.2012.17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094401942
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1137/1.9781611973068.56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1088801102
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1137/1.9781611973402.80 schema:sameAs https://app.dimensions.ai/details/publication/pub.1088801907
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1137/s0097539705429847 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062879588
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1142/s1793830910000905 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063025165
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1145/1536414.1536431 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025654406
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1145/1536414.1536475 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001385130
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1145/1868237.1868242 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042294846
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1145/1993806.1993830 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036586132
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1145/2767386.2767408 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006837839
136 rdf:type schema:CreativeWork
137 https://www.grid.ac/institutes/grid.11450.31 schema:alternateName University of Sassari
138 schema:name Dipartimento di Scienze Umanistiche e Sociali, Università di Sassari, Sassari, Italy
139 rdf:type schema:Organization
140 https://www.grid.ac/institutes/grid.419461.f schema:alternateName Istituto di Analisi dei Sistemi ed Informatica Antonio Ruberti
141 schema:name Dipartimento di Ingegneria e Scienze dell’Informazione e Matematica, Università degli Studi dell’Aquila, L’Aquila, Italy
142 Istituto di Analisi dei Sistemi ed Informatica, CNR, Rome, Italy
143 rdf:type schema:Organization
144 https://www.grid.ac/institutes/grid.5801.c schema:alternateName Swiss Federal Institute of Technology in Zurich
145 schema:name Department of Computer Science, ETH Zürich, Zürich, Switzerland
146 rdf:type schema:Organization
147 https://www.grid.ac/institutes/grid.6530.0 schema:alternateName University of Rome Tor Vergata
148 schema:name Dipartimento di Ingegneria dell’Impresa, Università di Roma “Tor Vergata”, Rome, Italy
149 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...