Logit Dynamics with Concurrent Updates for Local Interaction Potential Games View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2015-11

AUTHORS

Vincenzo Auletta, Diodato Ferraioli, Francesco Pasquale, Paolo Penna, Giuseppe Persiano

ABSTRACT

Logit choice dynamics constitute a family of randomized best response dynamics based on the logit choice function (McFadden in Frontiers in econometrics. Academic Press, New York, 1974) that models players with limited rationality and knowledge. In this paper we study the all-logit dynamics [also known as simultaneous learning (Alós-Ferrer and Netzer in Games Econ Behav 68(2):413–427, 2010)], where at each time step all players concurrently update their strategies according to the logit choice function. In the well studied (one-)logit dynamics (Blume in Games Econ Behav 5(3):387–424, 1993) instead at each step only one randomly chosen player is allowed to update. We study properties of the all-logit dynamics in the context of local interaction potential games, a class of games that has been used to model complex social phenomena (Montanari and Saberi 2009; Peyton in The economy as a complex evolving system. Oxford University Press, Oxford, 2003) and physical systems (Levin et al. in Probab Theory Relat Fields 146(1–2):223–265, 2010; Martinelli in Lectures on probability theory and statistics. Springer, Berlin, 1999). In a local interaction potential game players are the vertices of a social graph whose edges are two-player potential games. Each player picks one strategy to be played for all the games she is involved in and the payoff of the player is the sum of the payoffs from each of the games. We prove that local interaction potential games characterize the class of games for which the all-logit dynamics is reversible. We then compare the stationary behavior of one-logit and all-logit dynamics. Specifically, we look at the expected value of a notable class of observables, that we call decomposable observables. We prove that the difference between the expected values of the observables at stationarity for the two dynamics depends only on the rationality level β and on the distance of the social graph from a bipartite graph. In particular, if the social graph is bipartite then decomposable observables have the same expected value. Finally, we show that the mixing time of the all-logit dynamics has the same twofold behavior that has been highlighted in the case of the one-logit: for some games it exponentially depends on the rationality level β, whereas for other games it can be upper bounded by a function independent from β. More... »

PAGES

511-546

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00453-014-9959-4

DOI

http://dx.doi.org/10.1007/s00453-014-9959-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1052493480


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1401", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Economic Theory", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/14", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Economics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Salerno", 
          "id": "https://www.grid.ac/institutes/grid.11780.3f", 
          "name": [
            "Universit\u00e0 di Salerno, Salerno, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Auletta", 
        "givenName": "Vincenzo", 
        "id": "sg:person.016327521101.60", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016327521101.60"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sapienza University of Rome", 
          "id": "https://www.grid.ac/institutes/grid.7841.a", 
          "name": [
            "\u201cSapienza\u201d Universit\u00e0 di Roma, Rome, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ferraioli", 
        "givenName": "Diodato", 
        "id": "sg:person.013375000576.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013375000576.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sapienza University of Rome", 
          "id": "https://www.grid.ac/institutes/grid.7841.a", 
          "name": [
            "\u201cSapienza\u201d Universit\u00e0 di Roma, Rome, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pasquale", 
        "givenName": "Francesco", 
        "id": "sg:person.010366026047.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010366026047.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire d'Informatique Algorithmique: Fondements et Applications", 
          "id": "https://www.grid.ac/institutes/grid.462842.e", 
          "name": [
            "LIAFA, University Paris Diderot, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Penna", 
        "givenName": "Paolo", 
        "id": "sg:person.013624103516.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013624103516.76"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Salerno", 
          "id": "https://www.grid.ac/institutes/grid.11780.3f", 
          "name": [
            "Universit\u00e0 di Salerno, Salerno, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Persiano", 
        "givenName": "Giuseppe", 
        "id": "sg:person.013255374317.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013255374317.27"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1145/1993636.1993707", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002584715"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-33996-7_13", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010999340", 
          "https://doi.org/10.1007/978-3-642-33996-7_13"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1073814.1073833", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018522008"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00440-004-0369-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019937826", 
          "https://doi.org/10.1007/s00440-004-0369-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00440-004-0369-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019937826", 
          "https://doi.org/10.1007/s00440-004-0369-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jet.2016.03.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021147403"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00199-014-0809-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022396569", 
          "https://doi.org/10.1007/s00199-014-0809-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-18009-5_14", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023068739", 
          "https://doi.org/10.1007/978-3-642-18009-5_14"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-18009-5_14", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023068739", 
          "https://doi.org/10.1007/978-3-642-18009-5_14"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00440-008-0189-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024736277", 
          "https://doi.org/10.1007/s00440-008-0189-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00440-008-0189-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024736277", 
          "https://doi.org/10.1007/s00440-008-0189-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00440-008-0189-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024736277", 
          "https://doi.org/10.1007/s00440-008-0189-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1989493.1989522", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027041176"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.geb.2009.08.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027326612"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00191-002-0135-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027651103", 
          "https://doi.org/10.1007/s00191-002-0135-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-48115-7_2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028683830", 
          "https://doi.org/10.1007/978-3-540-48115-7_2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/game.1993.1023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030783580"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jeth.1996.0108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031014677"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.96.19.10564", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031033387"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s001820300138", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031432229", 
          "https://doi.org/10.1007/s001820300138"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/872035.872088", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033403903"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1536414.1536452", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033404267"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/g1040551", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034026833"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/game.2000.0800", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036041095"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-10841-9_54", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037569907", 
          "https://doi.org/10.1007/978-3-642-10841-9_54"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-10841-9_54", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037569907", 
          "https://doi.org/10.1007/978-3-642-10841-9_54"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01737559", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044775936", 
          "https://doi.org/10.1007/bf01737559"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/game.1996.0044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048802310"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-32834-3_12", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049542180", 
          "https://doi.org/10.1007/3-540-32834-3_12"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/1468-0262.00155", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051050088"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00224-013-9458-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051743567", 
          "https://doi.org/10.1007/s00224-013-9458-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jeth.2000.2746", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054489193"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/1467-937x.00121", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061835080"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2951493", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070145834"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/1.9781611973099.80", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1088801548"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/focs.2011.43", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094289383"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/focs.2009.64", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095269626"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511813603", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098666463"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/mbk/058", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098774897"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-11", 
    "datePublishedReg": "2015-11-01", 
    "description": "Logit choice dynamics constitute a family of randomized best response dynamics based on the logit choice function (McFadden in Frontiers in econometrics. Academic Press, New York, 1974) that models players with limited rationality and knowledge. In this paper we study the all-logit dynamics [also known as simultaneous learning (Al\u00f3s-Ferrer and Netzer in Games Econ Behav 68(2):413\u2013427, 2010)], where at each time step all players concurrently update their strategies according to the logit choice function. In the well studied (one-)logit dynamics (Blume in Games Econ Behav 5(3):387\u2013424, 1993) instead at each step only one randomly chosen player is allowed to update. We study properties of the all-logit dynamics in the context of local interaction potential games, a class of games that has been used to model complex social phenomena (Montanari and Saberi 2009; Peyton in The economy as a complex evolving system. Oxford University Press, Oxford, 2003) and physical systems (Levin et al. in Probab Theory Relat Fields 146(1\u20132):223\u2013265, 2010; Martinelli in Lectures on probability theory and statistics. Springer, Berlin, 1999). In a local interaction potential game players are the vertices of a social graph whose edges are two-player potential games. Each player picks one strategy to be played for all the games she is involved in and the payoff of the player is the sum of the payoffs from each of the games. We prove that local interaction potential games characterize the class of games for which the all-logit dynamics is reversible. We then compare the stationary behavior of one-logit and all-logit dynamics. Specifically, we look at the expected value of a notable class of observables, that we call decomposable observables. We prove that the difference between the expected values of the observables at stationarity for the two dynamics depends only on the rationality level \u03b2 and on the distance of the social graph from a bipartite graph. In particular, if the social graph is bipartite then decomposable observables have the same expected value. Finally, we show that the mixing time of the all-logit dynamics has the same twofold behavior that has been highlighted in the case of the one-logit: for some games it exponentially depends on the rationality level \u03b2, whereas for other games it can be upper bounded by a function independent from \u03b2.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00453-014-9959-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1047644", 
        "issn": [
          "0178-4617", 
          "1432-0541"
        ], 
        "name": "Algorithmica", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "73"
      }
    ], 
    "name": "Logit Dynamics with Concurrent Updates for Local Interaction Potential Games", 
    "pagination": "511-546", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "fa0b51fe7d5a969b0c66c2cf636e78333a7cddeec101419bb1cfd4b44492cacc"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00453-014-9959-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1052493480"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00453-014-9959-4", 
      "https://app.dimensions.ai/details/publication/pub.1052493480"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T01:08", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000516.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00453-014-9959-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00453-014-9959-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00453-014-9959-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00453-014-9959-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00453-014-9959-4'


 

This table displays all metadata directly associated to this object as RDF triples.

209 TRIPLES      21 PREDICATES      61 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00453-014-9959-4 schema:about anzsrc-for:14
2 anzsrc-for:1401
3 schema:author N14eb503edd4f446abb2806fa56580d19
4 schema:citation sg:pub.10.1007/3-540-32834-3_12
5 sg:pub.10.1007/978-3-540-48115-7_2
6 sg:pub.10.1007/978-3-642-10841-9_54
7 sg:pub.10.1007/978-3-642-18009-5_14
8 sg:pub.10.1007/978-3-642-33996-7_13
9 sg:pub.10.1007/bf01737559
10 sg:pub.10.1007/s001820300138
11 sg:pub.10.1007/s00191-002-0135-7
12 sg:pub.10.1007/s00199-014-0809-z
13 sg:pub.10.1007/s00224-013-9458-z
14 sg:pub.10.1007/s00440-004-0369-4
15 sg:pub.10.1007/s00440-008-0189-z
16 https://doi.org/10.1006/game.1993.1023
17 https://doi.org/10.1006/game.1996.0044
18 https://doi.org/10.1006/game.2000.0800
19 https://doi.org/10.1006/jeth.1996.0108
20 https://doi.org/10.1006/jeth.2000.2746
21 https://doi.org/10.1016/j.geb.2009.08.004
22 https://doi.org/10.1016/j.jet.2016.03.010
23 https://doi.org/10.1017/cbo9780511813603
24 https://doi.org/10.1073/pnas.96.19.10564
25 https://doi.org/10.1090/mbk/058
26 https://doi.org/10.1109/focs.2009.64
27 https://doi.org/10.1109/focs.2011.43
28 https://doi.org/10.1111/1467-937x.00121
29 https://doi.org/10.1111/1468-0262.00155
30 https://doi.org/10.1137/1.9781611973099.80
31 https://doi.org/10.1145/1073814.1073833
32 https://doi.org/10.1145/1536414.1536452
33 https://doi.org/10.1145/1989493.1989522
34 https://doi.org/10.1145/1993636.1993707
35 https://doi.org/10.1145/872035.872088
36 https://doi.org/10.2307/2951493
37 https://doi.org/10.3390/g1040551
38 schema:datePublished 2015-11
39 schema:datePublishedReg 2015-11-01
40 schema:description Logit choice dynamics constitute a family of randomized best response dynamics based on the logit choice function (McFadden in Frontiers in econometrics. Academic Press, New York, 1974) that models players with limited rationality and knowledge. In this paper we study the all-logit dynamics [also known as simultaneous learning (Alós-Ferrer and Netzer in Games Econ Behav 68(2):413–427, 2010)], where at each time step all players concurrently update their strategies according to the logit choice function. In the well studied (one-)logit dynamics (Blume in Games Econ Behav 5(3):387–424, 1993) instead at each step only one randomly chosen player is allowed to update. We study properties of the all-logit dynamics in the context of local interaction potential games, a class of games that has been used to model complex social phenomena (Montanari and Saberi 2009; Peyton in The economy as a complex evolving system. Oxford University Press, Oxford, 2003) and physical systems (Levin et al. in Probab Theory Relat Fields 146(1–2):223–265, 2010; Martinelli in Lectures on probability theory and statistics. Springer, Berlin, 1999). In a local interaction potential game players are the vertices of a social graph whose edges are two-player potential games. Each player picks one strategy to be played for all the games she is involved in and the payoff of the player is the sum of the payoffs from each of the games. We prove that local interaction potential games characterize the class of games for which the all-logit dynamics is reversible. We then compare the stationary behavior of one-logit and all-logit dynamics. Specifically, we look at the expected value of a notable class of observables, that we call decomposable observables. We prove that the difference between the expected values of the observables at stationarity for the two dynamics depends only on the rationality level β and on the distance of the social graph from a bipartite graph. In particular, if the social graph is bipartite then decomposable observables have the same expected value. Finally, we show that the mixing time of the all-logit dynamics has the same twofold behavior that has been highlighted in the case of the one-logit: for some games it exponentially depends on the rationality level β, whereas for other games it can be upper bounded by a function independent from β.
41 schema:genre research_article
42 schema:inLanguage en
43 schema:isAccessibleForFree false
44 schema:isPartOf N2de02e067bec456792d739ab12eebf89
45 N7f363f8ea69f4bc6a30c7ee34b017651
46 sg:journal.1047644
47 schema:name Logit Dynamics with Concurrent Updates for Local Interaction Potential Games
48 schema:pagination 511-546
49 schema:productId N25cddc511c9947589f5d4b48fafcb949
50 N49dc55b1ab864c72bf6ec75569e08b16
51 Nebb48a1d3c5948d497a4ec953cebafae
52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052493480
53 https://doi.org/10.1007/s00453-014-9959-4
54 schema:sdDatePublished 2019-04-11T01:08
55 schema:sdLicense https://scigraph.springernature.com/explorer/license/
56 schema:sdPublisher N806e4151246a4c6e9a2a290ddfab10cd
57 schema:url http://link.springer.com/10.1007%2Fs00453-014-9959-4
58 sgo:license sg:explorer/license/
59 sgo:sdDataset articles
60 rdf:type schema:ScholarlyArticle
61 N14eb503edd4f446abb2806fa56580d19 rdf:first sg:person.016327521101.60
62 rdf:rest Ne21d37da11d34a029ac2cf0ec91fded2
63 N25cddc511c9947589f5d4b48fafcb949 schema:name dimensions_id
64 schema:value pub.1052493480
65 rdf:type schema:PropertyValue
66 N2de02e067bec456792d739ab12eebf89 schema:issueNumber 3
67 rdf:type schema:PublicationIssue
68 N49dc55b1ab864c72bf6ec75569e08b16 schema:name doi
69 schema:value 10.1007/s00453-014-9959-4
70 rdf:type schema:PropertyValue
71 N7f363f8ea69f4bc6a30c7ee34b017651 schema:volumeNumber 73
72 rdf:type schema:PublicationVolume
73 N806e4151246a4c6e9a2a290ddfab10cd schema:name Springer Nature - SN SciGraph project
74 rdf:type schema:Organization
75 Naedd84ac95c74c8186bd9b739cfb7dda rdf:first sg:person.013624103516.76
76 rdf:rest Nec479dc69fe34028ad28e5a80c7bac21
77 Ne21d37da11d34a029ac2cf0ec91fded2 rdf:first sg:person.013375000576.36
78 rdf:rest Nfc8532bde12648ed9889c0f12a4375fe
79 Nebb48a1d3c5948d497a4ec953cebafae schema:name readcube_id
80 schema:value fa0b51fe7d5a969b0c66c2cf636e78333a7cddeec101419bb1cfd4b44492cacc
81 rdf:type schema:PropertyValue
82 Nec479dc69fe34028ad28e5a80c7bac21 rdf:first sg:person.013255374317.27
83 rdf:rest rdf:nil
84 Nfc8532bde12648ed9889c0f12a4375fe rdf:first sg:person.010366026047.55
85 rdf:rest Naedd84ac95c74c8186bd9b739cfb7dda
86 anzsrc-for:14 schema:inDefinedTermSet anzsrc-for:
87 schema:name Economics
88 rdf:type schema:DefinedTerm
89 anzsrc-for:1401 schema:inDefinedTermSet anzsrc-for:
90 schema:name Economic Theory
91 rdf:type schema:DefinedTerm
92 sg:journal.1047644 schema:issn 0178-4617
93 1432-0541
94 schema:name Algorithmica
95 rdf:type schema:Periodical
96 sg:person.010366026047.55 schema:affiliation https://www.grid.ac/institutes/grid.7841.a
97 schema:familyName Pasquale
98 schema:givenName Francesco
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010366026047.55
100 rdf:type schema:Person
101 sg:person.013255374317.27 schema:affiliation https://www.grid.ac/institutes/grid.11780.3f
102 schema:familyName Persiano
103 schema:givenName Giuseppe
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013255374317.27
105 rdf:type schema:Person
106 sg:person.013375000576.36 schema:affiliation https://www.grid.ac/institutes/grid.7841.a
107 schema:familyName Ferraioli
108 schema:givenName Diodato
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013375000576.36
110 rdf:type schema:Person
111 sg:person.013624103516.76 schema:affiliation https://www.grid.ac/institutes/grid.462842.e
112 schema:familyName Penna
113 schema:givenName Paolo
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013624103516.76
115 rdf:type schema:Person
116 sg:person.016327521101.60 schema:affiliation https://www.grid.ac/institutes/grid.11780.3f
117 schema:familyName Auletta
118 schema:givenName Vincenzo
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016327521101.60
120 rdf:type schema:Person
121 sg:pub.10.1007/3-540-32834-3_12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049542180
122 https://doi.org/10.1007/3-540-32834-3_12
123 rdf:type schema:CreativeWork
124 sg:pub.10.1007/978-3-540-48115-7_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028683830
125 https://doi.org/10.1007/978-3-540-48115-7_2
126 rdf:type schema:CreativeWork
127 sg:pub.10.1007/978-3-642-10841-9_54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037569907
128 https://doi.org/10.1007/978-3-642-10841-9_54
129 rdf:type schema:CreativeWork
130 sg:pub.10.1007/978-3-642-18009-5_14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023068739
131 https://doi.org/10.1007/978-3-642-18009-5_14
132 rdf:type schema:CreativeWork
133 sg:pub.10.1007/978-3-642-33996-7_13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010999340
134 https://doi.org/10.1007/978-3-642-33996-7_13
135 rdf:type schema:CreativeWork
136 sg:pub.10.1007/bf01737559 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044775936
137 https://doi.org/10.1007/bf01737559
138 rdf:type schema:CreativeWork
139 sg:pub.10.1007/s001820300138 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031432229
140 https://doi.org/10.1007/s001820300138
141 rdf:type schema:CreativeWork
142 sg:pub.10.1007/s00191-002-0135-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027651103
143 https://doi.org/10.1007/s00191-002-0135-7
144 rdf:type schema:CreativeWork
145 sg:pub.10.1007/s00199-014-0809-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1022396569
146 https://doi.org/10.1007/s00199-014-0809-z
147 rdf:type schema:CreativeWork
148 sg:pub.10.1007/s00224-013-9458-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1051743567
149 https://doi.org/10.1007/s00224-013-9458-z
150 rdf:type schema:CreativeWork
151 sg:pub.10.1007/s00440-004-0369-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019937826
152 https://doi.org/10.1007/s00440-004-0369-4
153 rdf:type schema:CreativeWork
154 sg:pub.10.1007/s00440-008-0189-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1024736277
155 https://doi.org/10.1007/s00440-008-0189-z
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1006/game.1993.1023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030783580
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1006/game.1996.0044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048802310
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1006/game.2000.0800 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036041095
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1006/jeth.1996.0108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031014677
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1006/jeth.2000.2746 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054489193
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1016/j.geb.2009.08.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027326612
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1016/j.jet.2016.03.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021147403
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1017/cbo9780511813603 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098666463
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1073/pnas.96.19.10564 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031033387
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1090/mbk/058 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098774897
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1109/focs.2009.64 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095269626
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1109/focs.2011.43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094289383
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1111/1467-937x.00121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061835080
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1111/1468-0262.00155 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051050088
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1137/1.9781611973099.80 schema:sameAs https://app.dimensions.ai/details/publication/pub.1088801548
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1145/1073814.1073833 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018522008
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1145/1536414.1536452 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033404267
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1145/1989493.1989522 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027041176
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1145/1993636.1993707 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002584715
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1145/872035.872088 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033403903
196 rdf:type schema:CreativeWork
197 https://doi.org/10.2307/2951493 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070145834
198 rdf:type schema:CreativeWork
199 https://doi.org/10.3390/g1040551 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034026833
200 rdf:type schema:CreativeWork
201 https://www.grid.ac/institutes/grid.11780.3f schema:alternateName University of Salerno
202 schema:name Università di Salerno, Salerno, Italy
203 rdf:type schema:Organization
204 https://www.grid.ac/institutes/grid.462842.e schema:alternateName Laboratoire d'Informatique Algorithmique: Fondements et Applications
205 schema:name LIAFA, University Paris Diderot, Paris, France
206 rdf:type schema:Organization
207 https://www.grid.ac/institutes/grid.7841.a schema:alternateName Sapienza University of Rome
208 schema:name “Sapienza” Università di Roma, Rome, Italy
209 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...