Ontology type: schema:ScholarlyArticle
2008-08-15
AUTHORS ABSTRACTWe study the problem of transforming plane triangulations into irreducible triangulations, which are plane graphs with a quadrangular exterior face, triangular interior faces and no separating triangles. Our linear time transformation reveals important relations between the minimum Schnyder’s realizers of plane triangulations (Bonichon et al., Proceedings of the 20th Annual Symposium on Theoretical Aspects of Computer Science, Lecture Notes in Computer Science, vol. 2607, pp. 499–510, Springer, Berlin, 2003; Research Report RR-1279-02, LaBRI, University of Bordeaux, France; Brehm, Diploma thesis, FB Mathematik und Informatik, Freie Universität Berlin, 2000) and the transversal structures of irreducible triangulations (Fusy, Proceedings of 13th International Symposium on Graph Drawing, Lecture Notes in Computer Science, vol. 3843, pp. 177–188, Springer, Berlin, 2005; He, SIAM J. Comput. 22:1218–1226, 1993). The transformation morphs a 3-connected plane graph into an internally 4-connected plane graph. Therefore some of the graph algorithms designed specifically for 4-connected plane graphs can be applied to 3-connected plane graphs indirectly. As an example of such applications, we present a linear time algorithm that produces a planar polyline drawing for a plane graph with n vertices in a grid of size bounded by W×H, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$W\leq\lfloor\frac{2n-2}{3}\rfloor$\end{document} , and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$W+H\leq\lfloor \frac{4n-4}{3}\rfloor$\end{document} . It uses at most \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lfloor\frac{2n-5}{3}\rfloor$\end{document} bends, and each edge uses at most one bend. Our algorithm is area optimal. Compared with the existing area optimal polyline drawing algorithm proposed in Bonichon et al. (Proceedings of the 28th International Workshop on Graph-Theoretic Concepts in Computer Science, Lecture Notes in Computer Science, vol. 2573, pp. 35–46, Springer, Berlin, 2002), our algorithm uses a smaller number of bends. Their bend bound is (n−2). More... »
PAGES381-397
http://scigraph.springernature.com/pub.10.1007/s00453-008-9215-x
DOIhttp://dx.doi.org/10.1007/s00453-008-9215-x
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1032949578
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Information and Computing Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0802",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Computation Theory and Mathematics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Computer Science Department, University of Alabama in Huntsville, 35899, Huntsville, AL, USA",
"id": "http://www.grid.ac/institutes/grid.265893.3",
"name": [
"Computer Science Department, University of Alabama in Huntsville, 35899, Huntsville, AL, USA"
],
"type": "Organization"
},
"familyName": "Zhang",
"givenName": "Huaming",
"id": "sg:person.012041227127.88",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012041227127.88"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/3-540-36379-3_4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1003004205",
"https://doi.org/10.1007/3-540-36379-3_4"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/pl00009290",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1040398436",
"https://doi.org/10.1007/pl00009290"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf00353652",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1015637021",
"https://doi.org/10.1007/bf00353652"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/3-540-36494-3_44",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1009890571",
"https://doi.org/10.1007/3-540-36494-3_44"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/11618058_17",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1014203093",
"https://doi.org/10.1007/11618058_17"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-540-77537-9_22",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1050806102",
"https://doi.org/10.1007/978-3-540-77537-9_22"
],
"type": "CreativeWork"
}
],
"datePublished": "2008-08-15",
"datePublishedReg": "2008-08-15",
"description": "We study the problem of transforming plane triangulations into irreducible triangulations, which are plane graphs with a quadrangular exterior face, triangular interior faces and no separating triangles. Our linear time transformation reveals important relations between the minimum Schnyder\u2019s realizers of plane triangulations (Bonichon et al., Proceedings of the 20th Annual Symposium on Theoretical Aspects of Computer Science, Lecture Notes in Computer Science, vol.\u00a02607, pp.\u00a0499\u2013510, Springer, Berlin, 2003; Research Report RR-1279-02, LaBRI, University of Bordeaux, France; Brehm, Diploma thesis, FB Mathematik und Informatik, Freie Universit\u00e4t Berlin, 2000) and the transversal structures of irreducible triangulations (Fusy, Proceedings of 13th International Symposium on Graph Drawing, Lecture Notes in Computer Science, vol.\u00a03843, pp.\u00a0177\u2013188, Springer, Berlin, 2005; He, SIAM J.\u00a0Comput. 22:1218\u20131226, 1993). The transformation morphs a 3-connected plane graph into an internally 4-connected plane graph. Therefore some of the graph algorithms designed specifically for 4-connected plane graphs can be applied to 3-connected plane graphs indirectly. As an example of such applications, we present a linear time algorithm that produces a planar polyline drawing for a plane graph with n vertices in a grid of size bounded by W\u00d7H, where \n\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$W\\leq\\lfloor\\frac{2n-2}{3}\\rfloor$\\end{document}\n, and \n\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$W+H\\leq\\lfloor \\frac{4n-4}{3}\\rfloor$\\end{document}\n. It uses at most \n\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$\\lfloor\\frac{2n-5}{3}\\rfloor$\\end{document} \nbends, and each edge uses at most one bend. Our algorithm is area optimal. Compared with the existing area optimal polyline drawing algorithm proposed in Bonichon et\u00a0al. (Proceedings of the 28th International Workshop on Graph-Theoretic Concepts in Computer Science, Lecture Notes in Computer Science, vol.\u00a02573, pp.\u00a035\u201346, Springer, Berlin, 2002), our algorithm uses a smaller number of bends. Their bend bound is (n\u22122).",
"genre": "article",
"id": "sg:pub.10.1007/s00453-008-9215-x",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1047644",
"issn": [
"0178-4617",
"1432-0541"
],
"name": "Algorithmica",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "2",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "57"
}
],
"keywords": [
"plane graph",
"irreducible triangulations",
"Planar Polyline Drawings",
"quadrangular exterior face",
"triangular interior faces",
"linear-time transformation",
"grid of size",
"linear time algorithm",
"plane triangulations",
"polyline drawings",
"Schnyder\u2019s realizers",
"separating triangles",
"time transformation",
"graph algorithms",
"transversal structure",
"graph",
"time algorithm",
"graph transformation",
"interior faces",
"algorithm",
"important relations",
"triangulation",
"such applications",
"polylines",
"exterior face",
"vertices",
"small number",
"realizers",
"transformation",
"grid",
"problem",
"bend",
"triangle",
"edge",
"applications",
"et",
"structure",
"number",
"al",
"relation",
"size",
"face",
"drawings",
"example",
"area"
],
"name": "Planar Polyline Drawings via Graph Transformations",
"pagination": "381-397",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1032949578"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s00453-008-9215-x"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s00453-008-9215-x",
"https://app.dimensions.ai/details/publication/pub.1032949578"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:24",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_452.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s00453-008-9215-x"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00453-008-9215-x'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00453-008-9215-x'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00453-008-9215-x'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00453-008-9215-x'
This table displays all metadata directly associated to this object as RDF triples.
127 TRIPLES
22 PREDICATES
76 URIs
62 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/s00453-008-9215-x | schema:about | anzsrc-for:08 |
2 | ″ | ″ | anzsrc-for:0802 |
3 | ″ | schema:author | N67901804874c4c50b1014cc9b26705f9 |
4 | ″ | schema:citation | sg:pub.10.1007/11618058_17 |
5 | ″ | ″ | sg:pub.10.1007/3-540-36379-3_4 |
6 | ″ | ″ | sg:pub.10.1007/3-540-36494-3_44 |
7 | ″ | ″ | sg:pub.10.1007/978-3-540-77537-9_22 |
8 | ″ | ″ | sg:pub.10.1007/bf00353652 |
9 | ″ | ″ | sg:pub.10.1007/pl00009290 |
10 | ″ | schema:datePublished | 2008-08-15 |
11 | ″ | schema:datePublishedReg | 2008-08-15 |
12 | ″ | schema:description | We study the problem of transforming plane triangulations into irreducible triangulations, which are plane graphs with a quadrangular exterior face, triangular interior faces and no separating triangles. Our linear time transformation reveals important relations between the minimum Schnyder’s realizers of plane triangulations (Bonichon et al., Proceedings of the 20th Annual Symposium on Theoretical Aspects of Computer Science, Lecture Notes in Computer Science, vol. 2607, pp. 499–510, Springer, Berlin, 2003; Research Report RR-1279-02, LaBRI, University of Bordeaux, France; Brehm, Diploma thesis, FB Mathematik und Informatik, Freie Universität Berlin, 2000) and the transversal structures of irreducible triangulations (Fusy, Proceedings of 13th International Symposium on Graph Drawing, Lecture Notes in Computer Science, vol. 3843, pp. 177–188, Springer, Berlin, 2005; He, SIAM J. Comput. 22:1218–1226, 1993). The transformation morphs a 3-connected plane graph into an internally 4-connected plane graph. Therefore some of the graph algorithms designed specifically for 4-connected plane graphs can be applied to 3-connected plane graphs indirectly. As an example of such applications, we present a linear time algorithm that produces a planar polyline drawing for a plane graph with n vertices in a grid of size bounded by W×H, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$W\leq\lfloor\frac{2n-2}{3}\rfloor$\end{document} , and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$W+H\leq\lfloor \frac{4n-4}{3}\rfloor$\end{document} . It uses at most \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lfloor\frac{2n-5}{3}\rfloor$\end{document} bends, and each edge uses at most one bend. Our algorithm is area optimal. Compared with the existing area optimal polyline drawing algorithm proposed in Bonichon et al. (Proceedings of the 28th International Workshop on Graph-Theoretic Concepts in Computer Science, Lecture Notes in Computer Science, vol. 2573, pp. 35–46, Springer, Berlin, 2002), our algorithm uses a smaller number of bends. Their bend bound is (n−2). |
13 | ″ | schema:genre | article |
14 | ″ | schema:inLanguage | en |
15 | ″ | schema:isAccessibleForFree | false |
16 | ″ | schema:isPartOf | N05d02c7c83b54dc792f682e5245d0da2 |
17 | ″ | ″ | N84d95aa4125c40519e0b6eac80a2d81f |
18 | ″ | ″ | sg:journal.1047644 |
19 | ″ | schema:keywords | Planar Polyline Drawings |
20 | ″ | ″ | Schnyder’s realizers |
21 | ″ | ″ | al |
22 | ″ | ″ | algorithm |
23 | ″ | ″ | applications |
24 | ″ | ″ | area |
25 | ″ | ″ | bend |
26 | ″ | ″ | drawings |
27 | ″ | ″ | edge |
28 | ″ | ″ | et |
29 | ″ | ″ | example |
30 | ″ | ″ | exterior face |
31 | ″ | ″ | face |
32 | ″ | ″ | graph |
33 | ″ | ″ | graph algorithms |
34 | ″ | ″ | graph transformation |
35 | ″ | ″ | grid |
36 | ″ | ″ | grid of size |
37 | ″ | ″ | important relations |
38 | ″ | ″ | interior faces |
39 | ″ | ″ | irreducible triangulations |
40 | ″ | ″ | linear time algorithm |
41 | ″ | ″ | linear-time transformation |
42 | ″ | ″ | number |
43 | ″ | ″ | plane graph |
44 | ″ | ″ | plane triangulations |
45 | ″ | ″ | polyline drawings |
46 | ″ | ″ | polylines |
47 | ″ | ″ | problem |
48 | ″ | ″ | quadrangular exterior face |
49 | ″ | ″ | realizers |
50 | ″ | ″ | relation |
51 | ″ | ″ | separating triangles |
52 | ″ | ″ | size |
53 | ″ | ″ | small number |
54 | ″ | ″ | structure |
55 | ″ | ″ | such applications |
56 | ″ | ″ | time algorithm |
57 | ″ | ″ | time transformation |
58 | ″ | ″ | transformation |
59 | ″ | ″ | transversal structure |
60 | ″ | ″ | triangle |
61 | ″ | ″ | triangular interior faces |
62 | ″ | ″ | triangulation |
63 | ″ | ″ | vertices |
64 | ″ | schema:name | Planar Polyline Drawings via Graph Transformations |
65 | ″ | schema:pagination | 381-397 |
66 | ″ | schema:productId | N0c89ef9dab28491d843d4b640adae35b |
67 | ″ | ″ | N8be2d38cf715488f833e46337568bc9c |
68 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1032949578 |
69 | ″ | ″ | https://doi.org/10.1007/s00453-008-9215-x |
70 | ″ | schema:sdDatePublished | 2022-05-20T07:24 |
71 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
72 | ″ | schema:sdPublisher | N962a95492c194345b876895ee1b9bce2 |
73 | ″ | schema:url | https://doi.org/10.1007/s00453-008-9215-x |
74 | ″ | sgo:license | sg:explorer/license/ |
75 | ″ | sgo:sdDataset | articles |
76 | ″ | rdf:type | schema:ScholarlyArticle |
77 | N05d02c7c83b54dc792f682e5245d0da2 | schema:volumeNumber | 57 |
78 | ″ | rdf:type | schema:PublicationVolume |
79 | N0c89ef9dab28491d843d4b640adae35b | schema:name | dimensions_id |
80 | ″ | schema:value | pub.1032949578 |
81 | ″ | rdf:type | schema:PropertyValue |
82 | N67901804874c4c50b1014cc9b26705f9 | rdf:first | sg:person.012041227127.88 |
83 | ″ | rdf:rest | rdf:nil |
84 | N84d95aa4125c40519e0b6eac80a2d81f | schema:issueNumber | 2 |
85 | ″ | rdf:type | schema:PublicationIssue |
86 | N8be2d38cf715488f833e46337568bc9c | schema:name | doi |
87 | ″ | schema:value | 10.1007/s00453-008-9215-x |
88 | ″ | rdf:type | schema:PropertyValue |
89 | N962a95492c194345b876895ee1b9bce2 | schema:name | Springer Nature - SN SciGraph project |
90 | ″ | rdf:type | schema:Organization |
91 | anzsrc-for:08 | schema:inDefinedTermSet | anzsrc-for: |
92 | ″ | schema:name | Information and Computing Sciences |
93 | ″ | rdf:type | schema:DefinedTerm |
94 | anzsrc-for:0802 | schema:inDefinedTermSet | anzsrc-for: |
95 | ″ | schema:name | Computation Theory and Mathematics |
96 | ″ | rdf:type | schema:DefinedTerm |
97 | sg:journal.1047644 | schema:issn | 0178-4617 |
98 | ″ | ″ | 1432-0541 |
99 | ″ | schema:name | Algorithmica |
100 | ″ | schema:publisher | Springer Nature |
101 | ″ | rdf:type | schema:Periodical |
102 | sg:person.012041227127.88 | schema:affiliation | grid-institutes:grid.265893.3 |
103 | ″ | schema:familyName | Zhang |
104 | ″ | schema:givenName | Huaming |
105 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012041227127.88 |
106 | ″ | rdf:type | schema:Person |
107 | sg:pub.10.1007/11618058_17 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1014203093 |
108 | ″ | ″ | https://doi.org/10.1007/11618058_17 |
109 | ″ | rdf:type | schema:CreativeWork |
110 | sg:pub.10.1007/3-540-36379-3_4 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1003004205 |
111 | ″ | ″ | https://doi.org/10.1007/3-540-36379-3_4 |
112 | ″ | rdf:type | schema:CreativeWork |
113 | sg:pub.10.1007/3-540-36494-3_44 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1009890571 |
114 | ″ | ″ | https://doi.org/10.1007/3-540-36494-3_44 |
115 | ″ | rdf:type | schema:CreativeWork |
116 | sg:pub.10.1007/978-3-540-77537-9_22 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1050806102 |
117 | ″ | ″ | https://doi.org/10.1007/978-3-540-77537-9_22 |
118 | ″ | rdf:type | schema:CreativeWork |
119 | sg:pub.10.1007/bf00353652 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1015637021 |
120 | ″ | ″ | https://doi.org/10.1007/bf00353652 |
121 | ″ | rdf:type | schema:CreativeWork |
122 | sg:pub.10.1007/pl00009290 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1040398436 |
123 | ″ | ″ | https://doi.org/10.1007/pl00009290 |
124 | ″ | rdf:type | schema:CreativeWork |
125 | grid-institutes:grid.265893.3 | schema:alternateName | Computer Science Department, University of Alabama in Huntsville, 35899, Huntsville, AL, USA |
126 | ″ | schema:name | Computer Science Department, University of Alabama in Huntsville, 35899, Huntsville, AL, USA |
127 | ″ | rdf:type | schema:Organization |