Consistent Sets of Secondary Structures in Proteins View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2007-11-10

AUTHORS

Piotr Berman, Jieun Jeong

ABSTRACT

Ab initio predictions of secondary structures in proteins have to combine local predictions, based on short fragments of the protein sequence, with consistency restrictions, as not all locally plausible predictions may be simultaneously true. We use the fact that secondary structures are patterns of hydrogen bonds and that a single residue can participate in hydrogen bonds of at most one secondary structure. Consistency of fixed-sized pieces of secondary structures is the easiest to approximate and we formalize it as 1-2 matching problem. Consistency of entire secondary structures is a version of set packing. We also investigate how to form a simple problem if we add the requirement that the secondary structure and the loops that connect them fit together in a metric space. Every problem that we investigated is MAX-SNP hard and it has a constant factor approximation. Computational experience suggests that in biological instances, we can find nearly optimal solutions using heuristics. More... »

PAGES

16-34

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00453-007-9068-8

DOI

http://dx.doi.org/10.1007/s00453-007-9068-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1042850308


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "The Pennsylvania State University, University Park, PA, USA", 
          "id": "http://www.grid.ac/institutes/grid.29857.31", 
          "name": [
            "The Pennsylvania State University, University Park, PA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Berman", 
        "givenName": "Piotr", 
        "id": "sg:person.01274506210.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01274506210.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The Pennsylvania State University, University Park, PA, USA", 
          "id": "http://www.grid.ac/institutes/grid.29857.31", 
          "name": [
            "The Pennsylvania State University, University Park, PA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jeong", 
        "givenName": "Jieun", 
        "id": "sg:person.0645500667.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0645500667.93"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/3-540-48523-6_17", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029242904", 
          "https://doi.org/10.1007/3-540-48523-6_17"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02392825", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036532220", 
          "https://doi.org/10.1007/bf02392825"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/268495a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052649401", 
          "https://doi.org/10.1038/268495a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1009822211065", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037941601", 
          "https://doi.org/10.1023/a:1009822211065"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-74126-8_5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039414859", 
          "https://doi.org/10.1007/978-3-540-74126-8_5"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2007-11-10", 
    "datePublishedReg": "2007-11-10", 
    "description": "Abstract\nAb initio predictions of secondary structures in proteins have to combine local predictions, based on short fragments of the protein sequence, with consistency restrictions, as not all locally plausible predictions may be simultaneously true.\n\nWe use the fact that secondary structures are patterns of hydrogen bonds and that a single residue can participate in hydrogen bonds of at most one secondary structure. Consistency of fixed-sized pieces of secondary structures is the easiest to approximate and we formalize it as 1-2 matching problem. Consistency of entire secondary structures is a version of set packing. We also investigate how to form a simple problem if we add the requirement that the secondary structure and the loops that connect them fit together in a metric space.\n\nEvery problem that we investigated is MAX-SNP hard and it has a constant factor approximation. Computational experience suggests that in biological instances, we can find nearly optimal solutions using heuristics.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00453-007-9068-8", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1047644", 
        "issn": [
          "0178-4617", 
          "1432-0541"
        ], 
        "name": "Algorithmica", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "53"
      }
    ], 
    "keywords": [
      "secondary structure", 
      "protein sequences", 
      "single residue", 
      "short fragments", 
      "protein", 
      "biological instances", 
      "residues", 
      "sequence", 
      "ab initio predictions", 
      "hydrogen bonds", 
      "fragments", 
      "plausible predictions", 
      "initio predictions", 
      "structure", 
      "patterns", 
      "loop", 
      "prediction", 
      "bonds", 
      "packing", 
      "set", 
      "fact", 
      "local predictions", 
      "restriction", 
      "requirements", 
      "instances", 
      "consistency restrictions", 
      "MAX SNP", 
      "pieces", 
      "consistent set", 
      "space", 
      "consistency", 
      "version", 
      "set packing", 
      "problem", 
      "solution", 
      "simple problems", 
      "computational experience", 
      "factor approximation", 
      "constant factor approximation", 
      "heuristics", 
      "experience", 
      "optimal solution", 
      "matching problem", 
      "approximation", 
      "metric spaces"
    ], 
    "name": "Consistent Sets of Secondary Structures in Proteins", 
    "pagination": "16-34", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1042850308"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00453-007-9068-8"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00453-007-9068-8", 
      "https://app.dimensions.ai/details/publication/pub.1042850308"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-08-04T16:56", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_451.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00453-007-9068-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00453-007-9068-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00453-007-9068-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00453-007-9068-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00453-007-9068-8'


 

This table displays all metadata directly associated to this object as RDF triples.

129 TRIPLES      21 PREDICATES      74 URIs      61 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00453-007-9068-8 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author N188d9759e36a424eb5ce500e41a893e8
4 schema:citation sg:pub.10.1007/3-540-48523-6_17
5 sg:pub.10.1007/978-3-540-74126-8_5
6 sg:pub.10.1007/bf02392825
7 sg:pub.10.1023/a:1009822211065
8 sg:pub.10.1038/268495a0
9 schema:datePublished 2007-11-10
10 schema:datePublishedReg 2007-11-10
11 schema:description Abstract Ab initio predictions of secondary structures in proteins have to combine local predictions, based on short fragments of the protein sequence, with consistency restrictions, as not all locally plausible predictions may be simultaneously true. We use the fact that secondary structures are patterns of hydrogen bonds and that a single residue can participate in hydrogen bonds of at most one secondary structure. Consistency of fixed-sized pieces of secondary structures is the easiest to approximate and we formalize it as 1-2 matching problem. Consistency of entire secondary structures is a version of set packing. We also investigate how to form a simple problem if we add the requirement that the secondary structure and the loops that connect them fit together in a metric space. Every problem that we investigated is MAX-SNP hard and it has a constant factor approximation. Computational experience suggests that in biological instances, we can find nearly optimal solutions using heuristics.
12 schema:genre article
13 schema:isAccessibleForFree false
14 schema:isPartOf N31bc82e0195e452fbe9d6a6816f63677
15 Nfe00336615564e65b49cb63342674f6e
16 sg:journal.1047644
17 schema:keywords MAX SNP
18 ab initio predictions
19 approximation
20 biological instances
21 bonds
22 computational experience
23 consistency
24 consistency restrictions
25 consistent set
26 constant factor approximation
27 experience
28 fact
29 factor approximation
30 fragments
31 heuristics
32 hydrogen bonds
33 initio predictions
34 instances
35 local predictions
36 loop
37 matching problem
38 metric spaces
39 optimal solution
40 packing
41 patterns
42 pieces
43 plausible predictions
44 prediction
45 problem
46 protein
47 protein sequences
48 requirements
49 residues
50 restriction
51 secondary structure
52 sequence
53 set
54 set packing
55 short fragments
56 simple problems
57 single residue
58 solution
59 space
60 structure
61 version
62 schema:name Consistent Sets of Secondary Structures in Proteins
63 schema:pagination 16-34
64 schema:productId N474b400097f346418087295f4eb9ed29
65 Ne4afd13d979f4ac4867d2a452c36f87c
66 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042850308
67 https://doi.org/10.1007/s00453-007-9068-8
68 schema:sdDatePublished 2022-08-04T16:56
69 schema:sdLicense https://scigraph.springernature.com/explorer/license/
70 schema:sdPublisher Na2a69089ee16448292dc8cb65eeb78d1
71 schema:url https://doi.org/10.1007/s00453-007-9068-8
72 sgo:license sg:explorer/license/
73 sgo:sdDataset articles
74 rdf:type schema:ScholarlyArticle
75 N188d9759e36a424eb5ce500e41a893e8 rdf:first sg:person.01274506210.27
76 rdf:rest Na204c32e74e34df99a2e636d322143b7
77 N31bc82e0195e452fbe9d6a6816f63677 schema:issueNumber 1
78 rdf:type schema:PublicationIssue
79 N474b400097f346418087295f4eb9ed29 schema:name dimensions_id
80 schema:value pub.1042850308
81 rdf:type schema:PropertyValue
82 Na204c32e74e34df99a2e636d322143b7 rdf:first sg:person.0645500667.93
83 rdf:rest rdf:nil
84 Na2a69089ee16448292dc8cb65eeb78d1 schema:name Springer Nature - SN SciGraph project
85 rdf:type schema:Organization
86 Ne4afd13d979f4ac4867d2a452c36f87c schema:name doi
87 schema:value 10.1007/s00453-007-9068-8
88 rdf:type schema:PropertyValue
89 Nfe00336615564e65b49cb63342674f6e schema:volumeNumber 53
90 rdf:type schema:PublicationVolume
91 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
92 schema:name Chemical Sciences
93 rdf:type schema:DefinedTerm
94 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
95 schema:name Physical Chemistry (incl. Structural)
96 rdf:type schema:DefinedTerm
97 sg:journal.1047644 schema:issn 0178-4617
98 1432-0541
99 schema:name Algorithmica
100 schema:publisher Springer Nature
101 rdf:type schema:Periodical
102 sg:person.01274506210.27 schema:affiliation grid-institutes:grid.29857.31
103 schema:familyName Berman
104 schema:givenName Piotr
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01274506210.27
106 rdf:type schema:Person
107 sg:person.0645500667.93 schema:affiliation grid-institutes:grid.29857.31
108 schema:familyName Jeong
109 schema:givenName Jieun
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0645500667.93
111 rdf:type schema:Person
112 sg:pub.10.1007/3-540-48523-6_17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029242904
113 https://doi.org/10.1007/3-540-48523-6_17
114 rdf:type schema:CreativeWork
115 sg:pub.10.1007/978-3-540-74126-8_5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039414859
116 https://doi.org/10.1007/978-3-540-74126-8_5
117 rdf:type schema:CreativeWork
118 sg:pub.10.1007/bf02392825 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036532220
119 https://doi.org/10.1007/bf02392825
120 rdf:type schema:CreativeWork
121 sg:pub.10.1023/a:1009822211065 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037941601
122 https://doi.org/10.1023/a:1009822211065
123 rdf:type schema:CreativeWork
124 sg:pub.10.1038/268495a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052649401
125 https://doi.org/10.1038/268495a0
126 rdf:type schema:CreativeWork
127 grid-institutes:grid.29857.31 schema:alternateName The Pennsylvania State University, University Park, PA, USA
128 schema:name The Pennsylvania State University, University Park, PA, USA
129 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...