Ontology type: schema:ScholarlyArticle
2007-10-09
AUTHORSRéka Albert, Bhaskar DasGupta, Riccardo Dondi, Eduardo Sontag
ABSTRACTIn this paper we consider the p-ary transitive reduction (TRp) problem where p>0 is an integer; for p=2 this problem arises in inferring a sparsest possible (biological) signal transduction network consistent with a set of experimental observations with a goal to minimize false positive inferences even if risking false negatives. Special cases of TRp have been investigated before in different contexts; the best previous results are as follows: The minimum equivalent digraph problem, that correspond to a special case of TR1 with no critical edges, is known to be MAX-SNP-hard, admits a polynomial time algorithm with an approximation ratio of 1.617+ε for any constant ε>0 (Chiu and Liu in Sci. Sin. 4:1396–1400, 1965) and can be solved in linear time for directed acyclic graphs (Aho et al. in SIAM J. Comput. 1(2):131–137, 1972). A 2-approximation algorithm exists for TR1 (Frederickson and JàJà in SIAM J. Comput. 10(2):270–283, 1981; Khuller et al. in 19th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 937–938, 1999). In this paper, our contributions are as follows: We observe that TRp, for any integer p>0, can be solved in linear time for directed acyclic graphs using the ideas in Aho et al. (SIAM J. Comput. 1(2):131–137, 1972). We provide a 1.78-approximation for TR1 that improves the 2-approximation mentioned in (2) above. We provide a 2+o(1)-approximation for TRp on general graphs for any fixed prime p>1. More... »
PAGES129-159
http://scigraph.springernature.com/pub.10.1007/s00453-007-9055-0
DOIhttp://dx.doi.org/10.1007/s00453-007-9055-0
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1026603604
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Information and Computing Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0802",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Computation Theory and Mathematics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Department of Physics, Pennsylvania State University, 16802, University Park, PA, USA",
"id": "http://www.grid.ac/institutes/grid.29857.31",
"name": [
"Department of Physics, Pennsylvania State University, 16802, University Park, PA, USA"
],
"type": "Organization"
},
"familyName": "Albert",
"givenName": "R\u00e9ka",
"id": "sg:person.01017036620.03",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01017036620.03"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Computer Science, University of Illinois at Chicago, 60607, Chicago, IL, USA",
"id": "http://www.grid.ac/institutes/grid.185648.6",
"name": [
"Department of Computer Science, University of Illinois at Chicago, 60607, Chicago, IL, USA"
],
"type": "Organization"
},
"familyName": "DasGupta",
"givenName": "Bhaskar",
"id": "sg:person.0763403270.10",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0763403270.10"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Dipartimento di Scienze dei Linguaggi, della Comunicazione e degli Studi Culturali, Universit\u00e0 degli Studi di Bergamo, 24129, Bergamo, Italy",
"id": "http://www.grid.ac/institutes/grid.33236.37",
"name": [
"Dipartimento di Scienze dei Linguaggi, della Comunicazione e degli Studi Culturali, Universit\u00e0 degli Studi di Bergamo, 24129, Bergamo, Italy"
],
"type": "Organization"
},
"familyName": "Dondi",
"givenName": "Riccardo",
"id": "sg:person.013111453243.48",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013111453243.48"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Mathematics, Rutgers University, 08903, New Brunswick, NJ, USA",
"id": "http://www.grid.ac/institutes/grid.430387.b",
"name": [
"Department of Mathematics, Rutgers University, 08903, New Brunswick, NJ, USA"
],
"type": "Organization"
},
"familyName": "Sontag",
"givenName": "Eduardo",
"id": "sg:person.0714217520.83",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0714217520.83"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/978-1-4613-1161-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1014027374",
"https://doi.org/10.1007/978-1-4613-1161-4"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nature02555",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1011649705",
"https://doi.org/10.1038/nature02555"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/11764298_23",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1013605920",
"https://doi.org/10.1007/11764298_23"
],
"type": "CreativeWork"
}
],
"datePublished": "2007-10-09",
"datePublishedReg": "2007-10-09",
"description": "Abstract\nIn this paper we consider the p-ary transitive reduction (TRp) problem where p>0 is an integer; for p=2 this problem arises in inferring a sparsest possible (biological) signal transduction network consistent with a set of experimental observations with a goal to minimize false positive inferences even if risking false negatives. Special cases of TRp have been investigated before in different contexts; the best previous results are as follows: \nThe minimum equivalent digraph problem, that correspond to a special case of TR1 with no critical edges, is known to be MAX-SNP-hard, admits a polynomial time algorithm with an approximation ratio of 1.617+\u03b5 for any constant \u03b5>0 (Chiu and Liu in Sci. Sin. 4:1396\u20131400, 1965) and can be solved in linear time for directed acyclic graphs (Aho et al. in SIAM J. Comput. 1(2):131\u2013137, 1972).\n\nA 2-approximation algorithm exists for TR1 (Frederickson and J\u00e0J\u00e0 in SIAM J. Comput. 10(2):270\u2013283, 1981; Khuller et al. in 19th Annual ACM-SIAM Symposium on Discrete Algorithms, pp.\u00a0937\u2013938, 1999).\n In this paper, our contributions are as follows: \nWe observe that TRp, for any integer p>0, can be solved in linear time for directed acyclic graphs using the ideas in Aho et al. (SIAM J. Comput. 1(2):131\u2013137, 1972).\n\nWe provide a 1.78-approximation for TR1 that improves the 2-approximation mentioned in (2) above.\n\nWe provide a 2+o(1)-approximation for TRp on general graphs for any fixed prime p>1.",
"genre": "article",
"id": "sg:pub.10.1007/s00453-007-9055-0",
"inLanguage": "en",
"isAccessibleForFree": false,
"isFundedItemOf": [
{
"id": "sg:grant.3044434",
"type": "MonetaryGrant"
}
],
"isPartOf": [
{
"id": "sg:journal.1047644",
"issn": [
"0178-4617",
"1432-0541"
],
"name": "Algorithmica",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "2",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "51"
}
],
"keywords": [
"special case",
"linear time",
"false-positive inferences",
"acyclic graph",
"digraph problems",
"polynomial time algorithm",
"general graphs",
"reduction problem",
"Directed Graphs",
"approximation ratio",
"best previous results",
"signal transduction networks",
"transitive reduction",
"MAX SNP",
"time algorithm",
"graph",
"transduction networks",
"previous results",
"critical edge",
"Aho et al",
"problem",
"algorithm",
"approximation",
"experimental observations",
"positive inferences",
"et al",
"integers",
"inference",
"network",
"set",
"edge",
"cases",
"idea",
"al",
"time",
"observations",
"results",
"contribution",
"false negatives",
"different contexts",
"goal",
"ratio",
"context",
"reduction",
"negatives",
"TR1",
"paper",
"Trp"
],
"name": "Inferring (Biological) Signal Transduction Networks via Transitive Reductions of Directed Graphs",
"pagination": "129-159",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1026603604"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s00453-007-9055-0"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s00453-007-9055-0",
"https://app.dimensions.ai/details/publication/pub.1026603604"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:24",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_445.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s00453-007-9055-0"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00453-007-9055-0'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00453-007-9055-0'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00453-007-9055-0'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00453-007-9055-0'
This table displays all metadata directly associated to this object as RDF triples.
150 TRIPLES
22 PREDICATES
76 URIs
65 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/s00453-007-9055-0 | schema:about | anzsrc-for:08 |
2 | ″ | ″ | anzsrc-for:0802 |
3 | ″ | schema:author | N86587d8ed8bf4e3992a4fd7bc789f361 |
4 | ″ | schema:citation | sg:pub.10.1007/11764298_23 |
5 | ″ | ″ | sg:pub.10.1007/978-1-4613-1161-4 |
6 | ″ | ″ | sg:pub.10.1038/nature02555 |
7 | ″ | schema:datePublished | 2007-10-09 |
8 | ″ | schema:datePublishedReg | 2007-10-09 |
9 | ″ | schema:description | Abstract In this paper we consider the p-ary transitive reduction (TRp) problem where p>0 is an integer; for p=2 this problem arises in inferring a sparsest possible (biological) signal transduction network consistent with a set of experimental observations with a goal to minimize false positive inferences even if risking false negatives. Special cases of TRp have been investigated before in different contexts; the best previous results are as follows: The minimum equivalent digraph problem, that correspond to a special case of TR1 with no critical edges, is known to be MAX-SNP-hard, admits a polynomial time algorithm with an approximation ratio of 1.617+ε for any constant ε>0 (Chiu and Liu in Sci. Sin. 4:1396–1400, 1965) and can be solved in linear time for directed acyclic graphs (Aho et al. in SIAM J. Comput. 1(2):131–137, 1972). A 2-approximation algorithm exists for TR1 (Frederickson and JàJà in SIAM J. Comput. 10(2):270–283, 1981; Khuller et al. in 19th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 937–938, 1999). In this paper, our contributions are as follows: We observe that TRp, for any integer p>0, can be solved in linear time for directed acyclic graphs using the ideas in Aho et al. (SIAM J. Comput. 1(2):131–137, 1972). We provide a 1.78-approximation for TR1 that improves the 2-approximation mentioned in (2) above. We provide a 2+o(1)-approximation for TRp on general graphs for any fixed prime p>1. |
10 | ″ | schema:genre | article |
11 | ″ | schema:inLanguage | en |
12 | ″ | schema:isAccessibleForFree | false |
13 | ″ | schema:isPartOf | N3ca66a8f9187463fbdbf943afe5797c0 |
14 | ″ | ″ | Nbfd6ecd507d24c1f9a64371ac340aad3 |
15 | ″ | ″ | sg:journal.1047644 |
16 | ″ | schema:keywords | Aho et al |
17 | ″ | ″ | Directed Graphs |
18 | ″ | ″ | MAX SNP |
19 | ″ | ″ | TR1 |
20 | ″ | ″ | Trp |
21 | ″ | ″ | acyclic graph |
22 | ″ | ″ | al |
23 | ″ | ″ | algorithm |
24 | ″ | ″ | approximation |
25 | ″ | ″ | approximation ratio |
26 | ″ | ″ | best previous results |
27 | ″ | ″ | cases |
28 | ″ | ″ | context |
29 | ″ | ″ | contribution |
30 | ″ | ″ | critical edge |
31 | ″ | ″ | different contexts |
32 | ″ | ″ | digraph problems |
33 | ″ | ″ | edge |
34 | ″ | ″ | et al |
35 | ″ | ″ | experimental observations |
36 | ″ | ″ | false negatives |
37 | ″ | ″ | false-positive inferences |
38 | ″ | ″ | general graphs |
39 | ″ | ″ | goal |
40 | ″ | ″ | graph |
41 | ″ | ″ | idea |
42 | ″ | ″ | inference |
43 | ″ | ″ | integers |
44 | ″ | ″ | linear time |
45 | ″ | ″ | negatives |
46 | ″ | ″ | network |
47 | ″ | ″ | observations |
48 | ″ | ″ | paper |
49 | ″ | ″ | polynomial time algorithm |
50 | ″ | ″ | positive inferences |
51 | ″ | ″ | previous results |
52 | ″ | ″ | problem |
53 | ″ | ″ | ratio |
54 | ″ | ″ | reduction |
55 | ″ | ″ | reduction problem |
56 | ″ | ″ | results |
57 | ″ | ″ | set |
58 | ″ | ″ | signal transduction networks |
59 | ″ | ″ | special case |
60 | ″ | ″ | time |
61 | ″ | ″ | time algorithm |
62 | ″ | ″ | transduction networks |
63 | ″ | ″ | transitive reduction |
64 | ″ | schema:name | Inferring (Biological) Signal Transduction Networks via Transitive Reductions of Directed Graphs |
65 | ″ | schema:pagination | 129-159 |
66 | ″ | schema:productId | N3220f1d84bcc46e4a17e47582abdedad |
67 | ″ | ″ | N90e4e0a69b514b67ab0d3ee4396e387d |
68 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1026603604 |
69 | ″ | ″ | https://doi.org/10.1007/s00453-007-9055-0 |
70 | ″ | schema:sdDatePublished | 2022-05-20T07:24 |
71 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
72 | ″ | schema:sdPublisher | N92bebada77db4076b7801781e050c291 |
73 | ″ | schema:url | https://doi.org/10.1007/s00453-007-9055-0 |
74 | ″ | sgo:license | sg:explorer/license/ |
75 | ″ | sgo:sdDataset | articles |
76 | ″ | rdf:type | schema:ScholarlyArticle |
77 | N3220f1d84bcc46e4a17e47582abdedad | schema:name | doi |
78 | ″ | schema:value | 10.1007/s00453-007-9055-0 |
79 | ″ | rdf:type | schema:PropertyValue |
80 | N3ca66a8f9187463fbdbf943afe5797c0 | schema:issueNumber | 2 |
81 | ″ | rdf:type | schema:PublicationIssue |
82 | N58f3a27e727b4a72bca8b0acf556b161 | rdf:first | sg:person.0763403270.10 |
83 | ″ | rdf:rest | Nf1dbf0def8124f6da67ae86b92ab8ce0 |
84 | N86587d8ed8bf4e3992a4fd7bc789f361 | rdf:first | sg:person.01017036620.03 |
85 | ″ | rdf:rest | N58f3a27e727b4a72bca8b0acf556b161 |
86 | N90e4e0a69b514b67ab0d3ee4396e387d | schema:name | dimensions_id |
87 | ″ | schema:value | pub.1026603604 |
88 | ″ | rdf:type | schema:PropertyValue |
89 | N92bebada77db4076b7801781e050c291 | schema:name | Springer Nature - SN SciGraph project |
90 | ″ | rdf:type | schema:Organization |
91 | Nb651ed305e384161b4c4ed5bff5f9272 | rdf:first | sg:person.0714217520.83 |
92 | ″ | rdf:rest | rdf:nil |
93 | Nbfd6ecd507d24c1f9a64371ac340aad3 | schema:volumeNumber | 51 |
94 | ″ | rdf:type | schema:PublicationVolume |
95 | Nf1dbf0def8124f6da67ae86b92ab8ce0 | rdf:first | sg:person.013111453243.48 |
96 | ″ | rdf:rest | Nb651ed305e384161b4c4ed5bff5f9272 |
97 | anzsrc-for:08 | schema:inDefinedTermSet | anzsrc-for: |
98 | ″ | schema:name | Information and Computing Sciences |
99 | ″ | rdf:type | schema:DefinedTerm |
100 | anzsrc-for:0802 | schema:inDefinedTermSet | anzsrc-for: |
101 | ″ | schema:name | Computation Theory and Mathematics |
102 | ″ | rdf:type | schema:DefinedTerm |
103 | sg:grant.3044434 | http://pending.schema.org/fundedItem | sg:pub.10.1007/s00453-007-9055-0 |
104 | ″ | rdf:type | schema:MonetaryGrant |
105 | sg:journal.1047644 | schema:issn | 0178-4617 |
106 | ″ | ″ | 1432-0541 |
107 | ″ | schema:name | Algorithmica |
108 | ″ | schema:publisher | Springer Nature |
109 | ″ | rdf:type | schema:Periodical |
110 | sg:person.01017036620.03 | schema:affiliation | grid-institutes:grid.29857.31 |
111 | ″ | schema:familyName | Albert |
112 | ″ | schema:givenName | Réka |
113 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01017036620.03 |
114 | ″ | rdf:type | schema:Person |
115 | sg:person.013111453243.48 | schema:affiliation | grid-institutes:grid.33236.37 |
116 | ″ | schema:familyName | Dondi |
117 | ″ | schema:givenName | Riccardo |
118 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013111453243.48 |
119 | ″ | rdf:type | schema:Person |
120 | sg:person.0714217520.83 | schema:affiliation | grid-institutes:grid.430387.b |
121 | ″ | schema:familyName | Sontag |
122 | ″ | schema:givenName | Eduardo |
123 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0714217520.83 |
124 | ″ | rdf:type | schema:Person |
125 | sg:person.0763403270.10 | schema:affiliation | grid-institutes:grid.185648.6 |
126 | ″ | schema:familyName | DasGupta |
127 | ″ | schema:givenName | Bhaskar |
128 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0763403270.10 |
129 | ″ | rdf:type | schema:Person |
130 | sg:pub.10.1007/11764298_23 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1013605920 |
131 | ″ | ″ | https://doi.org/10.1007/11764298_23 |
132 | ″ | rdf:type | schema:CreativeWork |
133 | sg:pub.10.1007/978-1-4613-1161-4 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1014027374 |
134 | ″ | ″ | https://doi.org/10.1007/978-1-4613-1161-4 |
135 | ″ | rdf:type | schema:CreativeWork |
136 | sg:pub.10.1038/nature02555 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1011649705 |
137 | ″ | ″ | https://doi.org/10.1038/nature02555 |
138 | ″ | rdf:type | schema:CreativeWork |
139 | grid-institutes:grid.185648.6 | schema:alternateName | Department of Computer Science, University of Illinois at Chicago, 60607, Chicago, IL, USA |
140 | ″ | schema:name | Department of Computer Science, University of Illinois at Chicago, 60607, Chicago, IL, USA |
141 | ″ | rdf:type | schema:Organization |
142 | grid-institutes:grid.29857.31 | schema:alternateName | Department of Physics, Pennsylvania State University, 16802, University Park, PA, USA |
143 | ″ | schema:name | Department of Physics, Pennsylvania State University, 16802, University Park, PA, USA |
144 | ″ | rdf:type | schema:Organization |
145 | grid-institutes:grid.33236.37 | schema:alternateName | Dipartimento di Scienze dei Linguaggi, della Comunicazione e degli Studi Culturali, Università degli Studi di Bergamo, 24129, Bergamo, Italy |
146 | ″ | schema:name | Dipartimento di Scienze dei Linguaggi, della Comunicazione e degli Studi Culturali, Università degli Studi di Bergamo, 24129, Bergamo, Italy |
147 | ″ | rdf:type | schema:Organization |
148 | grid-institutes:grid.430387.b | schema:alternateName | Department of Mathematics, Rutgers University, 08903, New Brunswick, NJ, USA |
149 | ″ | schema:name | Department of Mathematics, Rutgers University, 08903, New Brunswick, NJ, USA |
150 | ″ | rdf:type | schema:Organization |