Sequential modelling of a full-scale wastewater treatment plant using an artificial neural network View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2011-10

AUTHORS

Joong-Won Lee, Changwon Suh, Yoon-Seok Timothy Hong, Hang-Sik Shin

ABSTRACT

This work proposes a sequential modelling approach using an artificial neural network (ANN) to develop four independent multivariate models that are able to predict the dynamics of biochemical oxygen demand (BOD), chemical oxygen demand (COD), suspended solid (SS), and total nitrogen (TN) removal in a wastewater treatment plant (WWTP). Suitable structures of ANN models were automatically and conveniently optimized by a genetic algorithm rather than the conventional trial and error method. The sequential modelling approach, which is composed of two parts, a process disturbance estimator and a process behaviour predictor, was also presented to develop multivariate dynamic models. In particular, the process disturbance estimator was first employed to estimate the influent quality. The process behaviour predictor then sequentially predicted the effluent quality based on the estimated influent quality from the process disturbance estimator with other process variables. The efficiencies of the developed ANN models with a sequential modelling approach were demonstrated with a practical application using a data set collected from a full-scale WWTP during 2 years. The results show that the ANN with the sequential modelling approach successfully developed multivariate dynamic models of BOD, COD, SS, and TN removal with satisfactory estimation and prediction capability. Thus, the proposed method could be used as a powerful tool for the prediction of complex and nonlinear WWTP performance. More... »

PAGES

963

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00449-011-0547-6

DOI

http://dx.doi.org/10.1007/s00449-011-0547-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1019619955

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/21533792


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biological Oxygen Demand Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Biological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Chemical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Multivariate Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neural Networks (Computer)", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nitrogen", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nonlinear Dynamics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Oxygen", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Principal Component Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sewage", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Waste Disposal, Fluid", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Water Pollutants, Chemical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Weights and Measures", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Korea Advanced Institute of Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.37172.30", 
          "name": [
            "Department of Civil and Environmental Engineering, KAIST, 373-1 Guseong-dong, Yuseong-gu, 305-701, Daejeon, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Joong-Won", 
        "id": "sg:person.01263224515.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01263224515.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Water Environment Center, KIST, 39-1 Hawolgok-dong, Wolsong-gil 5, Seongbuk-gu, Seoul, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Suh", 
        "givenName": "Changwon", 
        "id": "sg:person.01147375022.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01147375022.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "London South Bank University", 
          "id": "https://www.grid.ac/institutes/grid.4756.0", 
          "name": [
            "Department of Civil and Environmental Engineering, London South Bank University, 103 Borough Road, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hong", 
        "givenName": "Yoon-Seok Timothy", 
        "id": "sg:person.0610250035.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0610250035.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Korea Advanced Institute of Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.37172.30", 
          "name": [
            "Department of Civil and Environmental Engineering, KAIST, 373-1 Guseong-dong, Yuseong-gu, 305-701, Daejeon, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shin", 
        "givenName": "Hang-Sik", 
        "id": "sg:person.01015020662.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01015020662.45"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.watres.2008.09.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002300541"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.envsoft.2008.07.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003847765"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1364-8152(98)00089-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004218355"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0043-1354(02)00494-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005556601"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0043-1354(02)00493-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009467392"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00449-006-0087-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011012356", 
          "https://doi.org/10.1007/s00449-006-0087-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00449-006-0087-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011012356", 
          "https://doi.org/10.1007/s00449-006-0087-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bit.10168", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011269585"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhazmat.2010.03.069", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013832426"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.envsoft.2010.02.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015501936"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0043-1354(01)00487-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023358103"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhazmat.2010.02.068", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023689485"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhazmat.2007.08.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024782005"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bej.2007.01.033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025197351"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00449-010-0430-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029942244", 
          "https://doi.org/10.1007/s00449-010-0430-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00449-010-0430-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029942244", 
          "https://doi.org/10.1007/s00449-010-0430-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.procbio.2005.01.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030663326"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.envsoft.2006.10.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031090660"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compchemeng.2008.01.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031156341"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0952-1976(03)00058-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034214897"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0952-1976(03)00058-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034214897"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00449-006-0062-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037459182", 
          "https://doi.org/10.1007/s00449-006-0062-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00449-006-0062-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037459182", 
          "https://doi.org/10.1007/s00449-006-0062-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0273-1223(98)00788-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040159947"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compchemeng.2006.10.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040600055"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0168-1656(03)00168-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041045149"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0168-1656(03)00168-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041045149"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bit.10247", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041345047"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cej.2010.03.063", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042126618"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00449-009-0304-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043764839", 
          "https://doi.org/10.1007/s00449-009-0304-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00449-009-0304-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043764839", 
          "https://doi.org/10.1007/s00449-009-0304-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1364-8152(96)00030-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045485842"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.envsoft.2003.10.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050474993"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/(asce)0733-9372(2007)133:12(1126)", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057580415"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2166/9781780402369", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069133490"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2166/wst.2002.0562", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1075027466"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2166/wst.2002.0636", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1075027508"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2166/wst.1999.0048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104105778"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-10", 
    "datePublishedReg": "2011-10-01", 
    "description": "This work proposes a sequential modelling approach using an artificial neural network (ANN) to develop four independent multivariate models that are able to predict the dynamics of biochemical oxygen demand (BOD), chemical oxygen demand (COD), suspended solid (SS), and total nitrogen (TN) removal in a wastewater treatment plant (WWTP). Suitable structures of ANN models were automatically and conveniently optimized by a genetic algorithm rather than the conventional trial and error method. The sequential modelling approach, which is composed of two parts, a process disturbance estimator and a process behaviour predictor, was also presented to develop multivariate dynamic models. In particular, the process disturbance estimator was first employed to estimate the influent quality. The process behaviour predictor then sequentially predicted the effluent quality based on the estimated influent quality from the process disturbance estimator with other process variables. The efficiencies of the developed ANN models with a sequential modelling approach were demonstrated with a practical application using a data set collected from a full-scale WWTP during 2\u00a0years. The results show that the ANN with the sequential modelling approach successfully developed multivariate dynamic models of BOD, COD, SS, and TN removal with satisfactory estimation and prediction capability. Thus, the proposed method could be used as a powerful tool for the prediction of complex and nonlinear WWTP performance.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00449-011-0547-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1297453", 
        "issn": [
          "1615-7591", 
          "1615-7605"
        ], 
        "name": "Bioprocess and Biosystems Engineering", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "8", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "34"
      }
    ], 
    "name": "Sequential modelling of a full-scale wastewater treatment plant using an artificial neural network", 
    "pagination": "963", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "5d7acfc8117613b1ba18bb2b1ea3b205150130a1f11eb3620137dfcdc7c0e222"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "21533792"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101088505"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00449-011-0547-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1019619955"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00449-011-0547-6", 
      "https://app.dimensions.ai/details/publication/pub.1019619955"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T18:20", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000512.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00449-011-0547-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00449-011-0547-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00449-011-0547-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00449-011-0547-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00449-011-0547-6'


 

This table displays all metadata directly associated to this object as RDF triples.

247 TRIPLES      21 PREDICATES      74 URIs      34 LITERALS      22 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00449-011-0547-6 schema:about N18b50e0e9ef94cf9be634ecf2ab4cfff
2 N304d6f3548c94ec68b7b20b5bf9ee9e2
3 N30f33e2da9634eeabe9f7039638c995e
4 N356daaf4735e4fb4a1cfaf17aee43f21
5 N39fd281189cd4bf5846ec423fe7bd0c1
6 N3f4381824a9b4fea9f0d2fa08472622c
7 N66ecbaf96d72448980554c504114a587
8 N6afcd3bfbb2a4aa9b35c783174757877
9 N8e2ff7385fc245b7a60ae47c91baeaa6
10 N9400970c21584078a3c00959c2e70826
11 Nb640b59ad6834c698458783f66792bb2
12 Ncbe08131fae04588992a6a6061a04990
13 Nf3f51df17d0e4cd99ee5053e33d450a8
14 anzsrc-for:08
15 anzsrc-for:0801
16 schema:author Nf1b40b03a96a4c959db01011d147ccf5
17 schema:citation sg:pub.10.1007/s00449-006-0062-3
18 sg:pub.10.1007/s00449-006-0087-7
19 sg:pub.10.1007/s00449-009-0304-2
20 sg:pub.10.1007/s00449-010-0430-x
21 https://doi.org/10.1002/bit.10168
22 https://doi.org/10.1002/bit.10247
23 https://doi.org/10.1016/j.bej.2007.01.033
24 https://doi.org/10.1016/j.cej.2010.03.063
25 https://doi.org/10.1016/j.compchemeng.2006.10.012
26 https://doi.org/10.1016/j.compchemeng.2008.01.008
27 https://doi.org/10.1016/j.envsoft.2003.10.005
28 https://doi.org/10.1016/j.envsoft.2006.10.001
29 https://doi.org/10.1016/j.envsoft.2008.07.004
30 https://doi.org/10.1016/j.envsoft.2010.02.003
31 https://doi.org/10.1016/j.jhazmat.2007.08.015
32 https://doi.org/10.1016/j.jhazmat.2010.02.068
33 https://doi.org/10.1016/j.jhazmat.2010.03.069
34 https://doi.org/10.1016/j.procbio.2005.01.012
35 https://doi.org/10.1016/j.watres.2008.09.022
36 https://doi.org/10.1016/s0043-1354(01)00487-0
37 https://doi.org/10.1016/s0043-1354(02)00493-1
38 https://doi.org/10.1016/s0043-1354(02)00494-3
39 https://doi.org/10.1016/s0168-1656(03)00168-8
40 https://doi.org/10.1016/s0273-1223(98)00788-4
41 https://doi.org/10.1016/s0952-1976(03)00058-7
42 https://doi.org/10.1016/s1364-8152(96)00030-8
43 https://doi.org/10.1016/s1364-8152(98)00089-9
44 https://doi.org/10.1061/(asce)0733-9372(2007)133:12(1126)
45 https://doi.org/10.2166/9781780402369
46 https://doi.org/10.2166/wst.1999.0048
47 https://doi.org/10.2166/wst.2002.0562
48 https://doi.org/10.2166/wst.2002.0636
49 schema:datePublished 2011-10
50 schema:datePublishedReg 2011-10-01
51 schema:description This work proposes a sequential modelling approach using an artificial neural network (ANN) to develop four independent multivariate models that are able to predict the dynamics of biochemical oxygen demand (BOD), chemical oxygen demand (COD), suspended solid (SS), and total nitrogen (TN) removal in a wastewater treatment plant (WWTP). Suitable structures of ANN models were automatically and conveniently optimized by a genetic algorithm rather than the conventional trial and error method. The sequential modelling approach, which is composed of two parts, a process disturbance estimator and a process behaviour predictor, was also presented to develop multivariate dynamic models. In particular, the process disturbance estimator was first employed to estimate the influent quality. The process behaviour predictor then sequentially predicted the effluent quality based on the estimated influent quality from the process disturbance estimator with other process variables. The efficiencies of the developed ANN models with a sequential modelling approach were demonstrated with a practical application using a data set collected from a full-scale WWTP during 2 years. The results show that the ANN with the sequential modelling approach successfully developed multivariate dynamic models of BOD, COD, SS, and TN removal with satisfactory estimation and prediction capability. Thus, the proposed method could be used as a powerful tool for the prediction of complex and nonlinear WWTP performance.
52 schema:genre research_article
53 schema:inLanguage en
54 schema:isAccessibleForFree false
55 schema:isPartOf N616a5d50d11d411eb724a480d6552ce6
56 Nc7c9c4e0af0341d0a05f24d14b0240d5
57 sg:journal.1297453
58 schema:name Sequential modelling of a full-scale wastewater treatment plant using an artificial neural network
59 schema:pagination 963
60 schema:productId N0ca936fc0eed44afb0f7c02ebbff8a78
61 N2073358a6786460e895e7974d4bb2d5d
62 N7526ed31242e48fb8f1b46374fd82323
63 Ndfa94588b3c64839b771cdbe413781d4
64 Ne046fe78744447638a22ec4c7b978308
65 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019619955
66 https://doi.org/10.1007/s00449-011-0547-6
67 schema:sdDatePublished 2019-04-10T18:20
68 schema:sdLicense https://scigraph.springernature.com/explorer/license/
69 schema:sdPublisher Nf81424e7cdf24e60993500aec0a999ba
70 schema:url http://link.springer.com/10.1007%2Fs00449-011-0547-6
71 sgo:license sg:explorer/license/
72 sgo:sdDataset articles
73 rdf:type schema:ScholarlyArticle
74 N0ca936fc0eed44afb0f7c02ebbff8a78 schema:name nlm_unique_id
75 schema:value 101088505
76 rdf:type schema:PropertyValue
77 N18b50e0e9ef94cf9be634ecf2ab4cfff schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
78 schema:name Water Pollutants, Chemical
79 rdf:type schema:DefinedTerm
80 N2073358a6786460e895e7974d4bb2d5d schema:name doi
81 schema:value 10.1007/s00449-011-0547-6
82 rdf:type schema:PropertyValue
83 N2569a88728dd4735bc54b55708b4a8f9 rdf:first sg:person.0610250035.36
84 rdf:rest Nce0bb93cb3614d9088034b9d59d9f307
85 N304d6f3548c94ec68b7b20b5bf9ee9e2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
86 schema:name Multivariate Analysis
87 rdf:type schema:DefinedTerm
88 N30f33e2da9634eeabe9f7039638c995e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
89 schema:name Waste Disposal, Fluid
90 rdf:type schema:DefinedTerm
91 N356daaf4735e4fb4a1cfaf17aee43f21 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
92 schema:name Neural Networks (Computer)
93 rdf:type schema:DefinedTerm
94 N39fd281189cd4bf5846ec423fe7bd0c1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
95 schema:name Principal Component Analysis
96 rdf:type schema:DefinedTerm
97 N3f4381824a9b4fea9f0d2fa08472622c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name Nonlinear Dynamics
99 rdf:type schema:DefinedTerm
100 N616a5d50d11d411eb724a480d6552ce6 schema:volumeNumber 34
101 rdf:type schema:PublicationVolume
102 N66ecbaf96d72448980554c504114a587 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name Nitrogen
104 rdf:type schema:DefinedTerm
105 N6afcd3bfbb2a4aa9b35c783174757877 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Biological Oxygen Demand Analysis
107 rdf:type schema:DefinedTerm
108 N7526ed31242e48fb8f1b46374fd82323 schema:name dimensions_id
109 schema:value pub.1019619955
110 rdf:type schema:PropertyValue
111 N8e2ff7385fc245b7a60ae47c91baeaa6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Oxygen
113 rdf:type schema:DefinedTerm
114 N9400970c21584078a3c00959c2e70826 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Weights and Measures
116 rdf:type schema:DefinedTerm
117 Nb640b59ad6834c698458783f66792bb2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Models, Biological
119 rdf:type schema:DefinedTerm
120 Nbd47f572a77646cdaccaa0115763a3fe rdf:first sg:person.01147375022.16
121 rdf:rest N2569a88728dd4735bc54b55708b4a8f9
122 Nc7c9c4e0af0341d0a05f24d14b0240d5 schema:issueNumber 8
123 rdf:type schema:PublicationIssue
124 Ncbe08131fae04588992a6a6061a04990 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Sewage
126 rdf:type schema:DefinedTerm
127 Nce0bb93cb3614d9088034b9d59d9f307 rdf:first sg:person.01015020662.45
128 rdf:rest rdf:nil
129 Ndfa94588b3c64839b771cdbe413781d4 schema:name readcube_id
130 schema:value 5d7acfc8117613b1ba18bb2b1ea3b205150130a1f11eb3620137dfcdc7c0e222
131 rdf:type schema:PropertyValue
132 Ne046fe78744447638a22ec4c7b978308 schema:name pubmed_id
133 schema:value 21533792
134 rdf:type schema:PropertyValue
135 Ne3596829574742deb616b145ebea797d schema:name Water Environment Center, KIST, 39-1 Hawolgok-dong, Wolsong-gil 5, Seongbuk-gu, Seoul, Republic of Korea
136 rdf:type schema:Organization
137 Nf1b40b03a96a4c959db01011d147ccf5 rdf:first sg:person.01263224515.33
138 rdf:rest Nbd47f572a77646cdaccaa0115763a3fe
139 Nf3f51df17d0e4cd99ee5053e33d450a8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
140 schema:name Models, Chemical
141 rdf:type schema:DefinedTerm
142 Nf81424e7cdf24e60993500aec0a999ba schema:name Springer Nature - SN SciGraph project
143 rdf:type schema:Organization
144 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
145 schema:name Information and Computing Sciences
146 rdf:type schema:DefinedTerm
147 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
148 schema:name Artificial Intelligence and Image Processing
149 rdf:type schema:DefinedTerm
150 sg:journal.1297453 schema:issn 1615-7591
151 1615-7605
152 schema:name Bioprocess and Biosystems Engineering
153 rdf:type schema:Periodical
154 sg:person.01015020662.45 schema:affiliation https://www.grid.ac/institutes/grid.37172.30
155 schema:familyName Shin
156 schema:givenName Hang-Sik
157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01015020662.45
158 rdf:type schema:Person
159 sg:person.01147375022.16 schema:affiliation Ne3596829574742deb616b145ebea797d
160 schema:familyName Suh
161 schema:givenName Changwon
162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01147375022.16
163 rdf:type schema:Person
164 sg:person.01263224515.33 schema:affiliation https://www.grid.ac/institutes/grid.37172.30
165 schema:familyName Lee
166 schema:givenName Joong-Won
167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01263224515.33
168 rdf:type schema:Person
169 sg:person.0610250035.36 schema:affiliation https://www.grid.ac/institutes/grid.4756.0
170 schema:familyName Hong
171 schema:givenName Yoon-Seok Timothy
172 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0610250035.36
173 rdf:type schema:Person
174 sg:pub.10.1007/s00449-006-0062-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037459182
175 https://doi.org/10.1007/s00449-006-0062-3
176 rdf:type schema:CreativeWork
177 sg:pub.10.1007/s00449-006-0087-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011012356
178 https://doi.org/10.1007/s00449-006-0087-7
179 rdf:type schema:CreativeWork
180 sg:pub.10.1007/s00449-009-0304-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043764839
181 https://doi.org/10.1007/s00449-009-0304-2
182 rdf:type schema:CreativeWork
183 sg:pub.10.1007/s00449-010-0430-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1029942244
184 https://doi.org/10.1007/s00449-010-0430-x
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1002/bit.10168 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011269585
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1002/bit.10247 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041345047
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1016/j.bej.2007.01.033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025197351
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1016/j.cej.2010.03.063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042126618
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1016/j.compchemeng.2006.10.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040600055
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1016/j.compchemeng.2008.01.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031156341
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1016/j.envsoft.2003.10.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050474993
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1016/j.envsoft.2006.10.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031090660
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1016/j.envsoft.2008.07.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003847765
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1016/j.envsoft.2010.02.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015501936
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1016/j.jhazmat.2007.08.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024782005
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1016/j.jhazmat.2010.02.068 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023689485
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1016/j.jhazmat.2010.03.069 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013832426
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1016/j.procbio.2005.01.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030663326
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1016/j.watres.2008.09.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002300541
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1016/s0043-1354(01)00487-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023358103
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1016/s0043-1354(02)00493-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009467392
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1016/s0043-1354(02)00494-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005556601
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1016/s0168-1656(03)00168-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041045149
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1016/s0273-1223(98)00788-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040159947
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1016/s0952-1976(03)00058-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034214897
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1016/s1364-8152(96)00030-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045485842
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1016/s1364-8152(98)00089-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004218355
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1061/(asce)0733-9372(2007)133:12(1126) schema:sameAs https://app.dimensions.ai/details/publication/pub.1057580415
233 rdf:type schema:CreativeWork
234 https://doi.org/10.2166/9781780402369 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069133490
235 rdf:type schema:CreativeWork
236 https://doi.org/10.2166/wst.1999.0048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104105778
237 rdf:type schema:CreativeWork
238 https://doi.org/10.2166/wst.2002.0562 schema:sameAs https://app.dimensions.ai/details/publication/pub.1075027466
239 rdf:type schema:CreativeWork
240 https://doi.org/10.2166/wst.2002.0636 schema:sameAs https://app.dimensions.ai/details/publication/pub.1075027508
241 rdf:type schema:CreativeWork
242 https://www.grid.ac/institutes/grid.37172.30 schema:alternateName Korea Advanced Institute of Science and Technology
243 schema:name Department of Civil and Environmental Engineering, KAIST, 373-1 Guseong-dong, Yuseong-gu, 305-701, Daejeon, Republic of Korea
244 rdf:type schema:Organization
245 https://www.grid.ac/institutes/grid.4756.0 schema:alternateName London South Bank University
246 schema:name Department of Civil and Environmental Engineering, London South Bank University, 103 Borough Road, London, UK
247 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...